摘要 — 评估了 1 µm 间距晶圆对晶圆 (W2W) Cu/SiCN 混合键合界面的电气可靠性。使用控制 IV 方法获取 W2W 混合堆栈的击穿电压分布。假设幂律模型,对使用条件外推可确认使用寿命超过 10 年,当温度低于 175 ◦ C 时,幂律指数高于 10。发现沿 Cu/SiCN 混合键合界面的传导机制为 Poole-Frenkel 发射,能量势垒等于 0.95 eV。仅在温度高于 200 ◦ C 和场高于 1.5 MV/cm 时才能观察到移动铜,证实了该键合界面对铜漂移具有良好的稳定性。索引术语 — 晶圆对晶圆 (W2W) 键合、可靠性、电介质击穿、混合焊盘泄漏。
层状过渡金属硫族化物是电子 Weyl 节点和拓扑超导的有希望的宿主。MoTe 2 是一个引人注目的例子,它同时包含非中心对称 T d 和中心对称 T ' 相,这两种相都被认为是拓扑上非平凡的。施加的压力会将这些相分离的结构转变调整到零温度,从而稳定混合的 T d – T ' 矩阵,该矩阵包含两个非平凡拓扑相之间的界面网络。本文中,我们表明,这一临界压力范围以不同的相干量子振荡为特征,表明拓扑非平凡 T d 和 T ' 相之间的拓扑差异产生了一种新兴的电子结构:拓扑界面网络。拓扑非平凡电子结构和锁定变换势垒的罕见组合导致了这种违反直觉的情况,其中可以在结构不均匀的材料中观察到量子振荡。这些结果进一步开启了稳定多种拓扑相与超导共存的可能性。
此预印本的版权所有者于 2023 年 10 月 10 日发布此版本。;https://doi.org/10.1101/2023.10.10.557742 doi:bioRxiv preprint
非晶态固体材料因其离子电导率、稳定性和可加工性等优良特性,在储能领域引起了越来越多的关注。然而,与块体晶体材料相比,密度泛函理论 (DFT) 计算的规模限制和实验方法的分辨率限制阻碍了对这些高度复杂亚稳态系统的基本理解。为了填补知识空白并指导非晶态电池材料和界面的合理设计,我们提出了一个基于机器学习的原子间势的分子动力学 (MD) 框架,该框架经过动态训练,以研究非晶态固体电解质 Li 3 PS 4 及其保护涂层非晶态 Li 3 B 11 O 18 。使用机器学习势使我们能够在 DFT 无法访问的时间和长度尺度上模拟材料,同时保持接近 DFT 水平的精度。这种方法使我们能够计算非晶化能、非晶-非晶界面能以及界面对锂离子电导率的影响。这项研究证明了主动学习的原子间势在将从头算建模的应用扩展到更复杂和现实的系统(例如非晶材料和界面)方面的良好作用。
注意:在 2.1.x 之前的版本中,当启用外部身份验证时,如果 AAA 服务器无法访问或 AAA 服务器拒绝未知用户名,Cisco DNA Center 将恢复为本地用户。在当前版本中,如果 AAA 服务器无法访问或 AAA 服务器拒绝未知用户名,Cisco DNA Center 不会恢复到本地用户。启用外部身份验证回退后,外部用户和本地管理员可以登录 Cisco DNA Center。
野生动植物市场和潮湿的野生动植物市场是一种人类 - 动物界面,通常是野生捕获和圈养的动物及其产品的交易中心。这些市场为人畜共患病和新兴传染病(EID)的溢出提供了理想的环境。这些情况可能会引起严重的关注,特别是与经常与人类和家畜相互作用的野生动植物物种有关。eids对人类,生态系统和公共卫生构成了重大风险,如当前的COVID-19大流行和以前的其他爆发所证明的那样,包括高度致病的禽流感H5N1。尽管似乎不可能消除开斋节,但我们仍然能够最大程度地降低风险并采取多种措施来防止新的开斋节起源于动物。这项研究的目的是回顾几种类型的人类溢出,传染剂和动物宿主或储层的人类 - 动物界面。确定这些因素将支持人类与动物界面环境中的干预措施的发展和有效的疾病控制。
大陆俯冲的动力学在很大程度上受俯冲通道所涉及的岩石的流变特性控制。蛇形矿在地质应变速率下的粘度较低。然而,仍然缺乏大陆俯冲过程中蛇纹石通道的引人注目的地球物理证据。在这里,我们表明,沿欧洲板和上覆的亚得里亚海地幔之间的板界面,在西阿尔卑斯山下方发现异常低的剪切波速度。我们建议这些地震速度表明弱化石蛇纹石通道的堆叠残留物,其中包括在海洋流量和地幔北向蛇形蛇状岩形成的深蛇纹石片,由从支撑板的散发器释放而成。我们的结果表明,这种蛇形化的板界面可能有利于将大陆壳俯冲到上地幔中,以及超高压力变质岩石的形成/发掘,提供了新的限制,以发展大陆俯冲动力学的概念和定量理解。
摘要 - 由于固有的硬件限制,资源约束设备上的真实数量随机数生成具有挑战性。这些局限性会影响找到具有高吞吐量和足够良好的可靠随机性来源的能力。作为脑部计算机界面领域(BCI)领域的最新发展表明,需要随机数的广泛应用,我们研究了基于皮质学的神经数据作为随机数生成的种子的可用性。我们开发了从脑数据中产生随机位的算法,并使用NIST SP 800-22测试套件来评估随机性的质量。我们将算法作为硬件随机位发电机(RBG)实现。然后,我们将这些实现作为硬件加速器集成在MindCrypt,MindCrypt是一种异质的芯片系统(SOC),配备了主机处理器来运行BCI应用程序。在MindCrypt中,应用程序使用我们的RBG加速器作为随机数生成器(RNG)和素数生成器。与使用基于最先进的Linux的RNG相比,在RISC-V处理器上运行软件应用程序的FPGA原型在RISC-V处理器上运行软件应用程序的提高了376倍和4885X的能源效率。通过将RBG加速器和加密加速器之间的点对点(P2P)通信传递随机位,我们在性能中获得6.1倍,与直接存储器访问(DMA)相比,能量效率为12.4倍。最后,我们探索了MindCrypt的部分重新配置的FPGA实现的功效,该实现动态优化了在资源约束的BCI SOC中随机数生成的吞吐量。索引条款 - SOC,HLS,BCI,RISC-V,P2P,FPGA,DPR
允许免费复制本作品的全部或部分以供个人或课堂使用,但不得出于营利或商业目的而复制或分发,且副本首页必须注明此声明和完整引文。必须尊重 ACM 以外的人拥有的本作品组成部分的版权。允许摘要并注明出处。若要复制、重新发布、发布到服务器或重新分发到列表,则需要事先获得特定许可和/或支付费用。请向 permissions@acm.org 申请许可。
摘要:界面和边界处电荷,热和电磁场的基本载体之间的耦合相互作用引起了能够实现各种技术的能量过程。这些耦合载体之间的能量转导导致在这些表面上的热量耗散,通常是由热边界电阻量化的,因此推动了现代纳米技术的功能,这些功能继续在计算,通信,保健,清洁能源,电源回收,感应,感应,感应和制造中继续提供计算,通信,卫生保健,清洁能源,以少数几个数字来命名一少数的益处。目的是总结有关超快和纳米级能量转导和传热机制的最新作品,当时不同的热载体夫妇靠近接口或界面。我们回顾了固体,液体,气体和等离子体的耦合传热机制,这些机制驱动所得的界面传热和温度梯度,这是由于能量和动量耦合所致的各种电子,颤音,光子光子,极化子(Plasmon polarons and Polarons and Polaronsons and Polleonsons and Polleons)和分子的动量耦合而引起的。这些具有耦合能载体的界面热运输过程涉及相对较新的研究,因此,存在一些机会,可以进一步发展这些新生的领域,我们在本综述的整个过程中对此进行了评论。关键字:界面传热,能量转导,耦合局部平衡,电子 - 声子耦合,等离子体极化子,弹道热注入,等离子体,等离子体,从头算在界面上的电子 - 振动性动态,固体 - 气体相互作用