1 Aura Vector Consulting,3041 Turnbull Bay Road,New Smyrna Beach,FL 32168 2 Toyota Technical Center,8777 Platt Road,Saline,MI 48176 摘要 本研究涉及对 Cessna T-303 Crusader 双引擎飞机垂直尾翼疲劳裂纹扩展的飞行中监测。在实验室中对带凹槽的 7075-T6 铝制飞机槽梁支撑结构进行了周期性测试。在这些疲劳测试期间采集了声发射 (AE) 数据,随后将其分为三种故障机制:疲劳开裂、塑性变形和摩擦噪声。然后使用这些数据来训练 Kohonen 自组织映射 (SOM) 神经网络。此时,在 T-303 飞机垂直尾翼的肋骨之间安装了类似的槽梁支撑结构作为冗余结构构件。随后从初始滑行和起飞到最终进近和着陆收集 AE 数据。然后使用实验室训练的 SOM 神经网络将飞行测试期间记录的 AE 数据分类为上述三种机制。由此确定塑性变形发生在所有飞行区域,但在滑行操作期间最为普遍,疲劳裂纹扩展活动主要发生在飞行操作期间 - 特别是在滚转和荷兰滚机动期间 - 而机械摩擦噪声主要发生在飞行期间,在滑行期间很少发生。SOM 对故障机制分类的成功表明,用于老化飞机的原型飞行结构健康监测系统在捕获疲劳裂纹扩展数据方面非常成功。可以设想,在老化飞机中应用此类结构健康监测系统可以警告即将发生的故障,并在需要时而不是按照保守计算的间隔更换零件。因此,继续进行这项研究最终将有助于最大限度地降低维护成本并延长老化飞机的使用寿命。关键词:老化飞机,飞行中疲劳裂纹监测,Kohonen自组织映射,神经网络,结构健康监测 简介 飞机疲劳开裂 如今,飞机的使用寿命通常比汽车更长。这是由于许多因素造成的,包括飞机的成本、政府法规以及故障的严重后果。由于飞机的使用寿命预期如此之长,因此引发了许多问题。问题的主要根源可能是疲劳裂纹的存在和增长,这也是本研究的主题。修复疲劳裂纹造成的损坏的能力一直不是问题,但疲劳裂纹增长的检测和监测已被证明是一个真正的挑战。疲劳开裂是由于低于正常延展性金属的屈服强度的循环载荷导致的脆性断裂。裂纹尖端的高度集中应力导致在裂纹前方形成心形塑性变形区。该塑性区应变随着循环载荷而硬化,当金属的延展性耗尽时会断裂
1 Aura Vector Consulting,3041 Turnbull Bay Road,New Smyrna Beach,FL 32168 2 Toyota Technical Center,8777 Platt Road,Saline,MI 48176 摘要 本研究涉及对 Cessna T-303 Crusader 双引擎飞机垂直尾翼疲劳裂纹扩展的飞行中监测。在实验室中对带凹槽的 7075-T6 铝制飞机槽梁支撑结构进行了周期性测试。在这些疲劳测试期间采集了声发射 (AE) 数据,随后将其分为三种故障机制:疲劳开裂、塑性变形和摩擦噪声。然后使用这些数据来训练 Kohonen 自组织映射 (SOM) 神经网络。此时,在 T-303 飞机垂直尾翼的肋骨之间安装了类似的槽梁支撑结构作为冗余结构构件。随后从初始滑行和起飞到最终进近和着陆收集 AE 数据。然后使用实验室训练的 SOM 神经网络将飞行测试期间记录的 AE 数据分类为上述三种机制。由此确定塑性变形发生在所有飞行区域,但在滑行操作期间最为普遍,疲劳裂纹扩展活动主要发生在飞行操作期间 - 特别是在滚转和荷兰滚机动期间 - 而机械摩擦噪声主要发生在飞行期间,在滑行期间很少发生。SOM 对故障机制分类的成功表明,用于老化飞机的原型飞行结构健康监测系统在捕获疲劳裂纹扩展数据方面非常成功。设想在老化飞机中应用此类结构健康监测系统可以警告即将发生的故障,并在需要时而不是按照保守计算的间隔更换零件。因此,继续进行这项研究最终将有助于最大限度地降低维护成本并延长老化飞机的使用寿命。关键词:老化飞机,飞行中疲劳裂纹监测,Kohonen自组织映射,神经网络,结构健康监测 简介 飞机疲劳开裂 如今,飞机的使用寿命通常比汽车更长。这是由于许多因素造成的,包括飞机的成本、政府法规以及故障的严重后果。由于飞机的使用寿命预期如此之长,因此引发了许多问题。问题的主要来源,也是本研究的主题,可能是疲劳裂纹的存在和增长。修复疲劳裂纹造成的损坏的能力一直不是问题,但疲劳裂纹增长的检测和监测已被证明是一个真正的挑战。疲劳开裂是由于低于正常延展性金属的屈服强度的循环载荷导致的脆性断裂。裂纹尖端的高度集中应力导致在裂纹前方形成心形塑性变形区。该塑性区应变随着循环载荷而硬化,当金属的延展性耗尽时会断裂
左发动机非包容性故障是由高压压缩机 (HPC) 第 8 级圆盘中的疲劳裂纹引起的。疲劳裂纹始于圆盘腹板的后表面,并穿过腹板并沿圆周方向发展。断裂区域在腹板后表面附近具有晶间外观,在远离起始点处具有穿晶外观。穿晶区域表现出与低周疲劳裂纹扩展一致的条纹。 GE 在预测第 8 级盘后腹板的低周疲劳裂纹萌生寿命时考虑了最坏情况(最高应力和温度以及最低材料特性),并发现其低周疲劳萌生寿命约为 29,800 次。(疲劳断裂可分为起始阶段和扩展阶段。在起始阶段,材料结构由于周期性载荷而发生变化,但未形成裂纹。最终形成裂纹并开始增长,表明扩展阶段开始。FAA 咨询通告 33.70-01 使用了该概念
神经网络使我们能够模拟 QSTE340TM 钢的疲劳寿命,并有效预测材料在循环载荷下的裂纹扩展。我们根据 [7] 中获得的实验数据建立了函数依赖关系模型。数据集 [8] 包含裂纹长度 a 与载荷循环数 N 的依赖关系,其中四个应力比 R 分别为 R = 0.1、0.3、0.5 和 0.7,在恒定振幅 (CA) 下,以及在单次拉伸过载后,过载比 Rol = 1.5、2.0。神经网络在一个数据集上训练,其中输入参数为载荷循环数 N 、应力比 R 和过载比 Rol ,输出参数为裂纹长度 a 。载荷循环 N 反映了钢的载荷循环数,是评估疲劳裂纹扩展的主要参数之一。应力比 R 决定了循环中最小载荷和最大载荷的比率,这也会影响疲劳裂纹发展的速度。过载率 Rol 考虑负载超过标称值的情况。
断裂力学是经典工程机制的一个分支,它涉及应力场和外部负载下破裂固体的裂纹生长标准。该课程涵盖了断裂力学和故障标准的基本概念,线性弹性断裂力学(LEFM),弹性塑料断裂,金属,聚合物,陶瓷和复合材料的断裂,以及机制,例如J-Integral和CoD,例如J-Integral和CoD,以测量破裂的严重程度。疲劳裂纹生长机制,微裂纹以及如何发展和控制裂纹是过程的一部分。将涵盖如何使用有限元素,多尺度断裂力学和不同尺度上的断裂来评估断裂参数的计算方案。课程目录:线性弹性断裂力学(LEFM),能量释放速率,压力强度因子,非线性断裂力学,J构成,弹性塑料骨折,裂纹尖端可塑性,裂纹繁殖,裂缝繁殖,裂缝疲劳裂纹的生长,裂缝裂纹测试,裂纹测试,裂纹和组合材料和组合材料,较稳定性,更稳固,强化。课程目的:
加工金属结构,385 加工历史效应,385 疲劳,524 疲劳裂纹闭合,493,617, 631 疲劳裂纹扩展,510, 557 疲劳裂纹寿命,预测,573 疲劳裂纹萌生,715 非平面,573 扩展,445 疲劳寿命,573 铁素体钢,360, 672, 729 有限元分析,3, 161,176, 192, 270, 328, 407, 426 断口分析,557 断裂,73, 385 断裂力学,3, 129, 458 FRANCD,573 力矩框架连接,57 表面开裂板,288 断裂路径, 57 断裂预测,426 断裂过程区,510 断裂测试,328 断裂韧性,209,288,689 A533B 钢,307 HSLA-65 焊缝,209 测量方法,757 SINTAP 项目,73 过渡区中的钢材,672 不匹配焊缝,328 焊缝,426 断裂韧性缩放模型,653 FRANC3D,573 频率效应,598
通过增材制造 (AM) 生产的材料与文献极为相关。然而,对于这些材料的疲劳寿命以及 VHCF 模式中主要裂纹的相应起始机制,仍然存在尚未巩固的知识。在通过传统方法生产的材料中观察到的是,疲劳裂纹往往从位于内部或表面下区域的材料固有缺陷处成核。疲劳裂纹演变过程的变化导致在断裂表面形成一种称为“鱼眼”的特征形态。在断裂表面上观察到的另一个普遍现象是在起始点附近形成了一个细颗粒区域 (FGA)。这项工作旨在研究两种不同材料在 VHCF 中的裂纹成核机制:传统钢、DIN 34CrNiMo6 和通过 L-DED 生产的 AISI 316L 不锈钢。超声波测试以 20±0.5 kHz 的频率和 R= -1 进行。获得了 SN 曲线并分析了断裂面,验证了鱼眼和 FGA 的形成。将 FGA 尺寸与经验方程估算的值进行了比较。FGA 和鱼眼尺寸与应力幅值和最大应力强度因子 (SIF) 有关。
纤维金属层压板 (FML) 是一大类组合粘合结构,由粘合有纤维增强聚合物层的薄金属板组成 [1]。FML 的混合概念因其出色的抗疲劳性以及抗冲击、耐腐蚀等其他优异的机械特性而闻名。FML 的一种变体 Glare 由交替粘合在一起的薄铝板和玻璃纤维环氧层制成,已在空客 A380 上大规模用作机身蒙皮和尾翼前缘蒙皮材料。与单片金属板相比,FML 的优异疲劳性能归因于完整纤维在疲劳裂纹尖端后提供的桥接机制,如图所示。1。抗疲劳纤维保持完整,并抑制金属层中裂纹的张开,从而使载荷从开裂的金属层转移到桥接纤维。这种桥接机制显著增强了金属层对疲劳裂纹扩展的抵抗力,因为它降低了裂纹尖端的应力严重程度。同时,由于开裂的金属层和桥接纤维之间以剪切形式循环传递载荷,在复合材料/金属界面处发生分层,这是 FML 中的一种伴随失效机制 [2] 。FML 中显著改善的抗疲劳性和失效机制非常具有代表性,是广泛应用于各个工程领域的一般组合胶接结构中的代表。组合粘合结构提供的定制裂纹延迟功能通常用于航空航天工业的安全关键结构 [4,5] 。冗余负载路径和损伤阻止功能,例如机身撕裂带、疲劳裂纹延迟器 [6,7] 和裂纹阻止器 [8] ,最好通过粘合剂粘合到蒙皮板上,以减缓疲劳裂纹扩展,并允许定期检查以检测疲劳裂纹。组合结构的这些功能与适航法规推荐的损伤容限设计理念相得益彰。通常采用粘合技术而不是机械紧固来向蒙皮板添加额外的负载路径,以避免与紧固过程相关的应力集中和高成本 [5] 。粘合剂粘接解决方案还提供了隔离特定结构元件损坏的机会 [5] 。此外,含有裂纹的薄壁金属飞机结构通常通过将复合材料补片粘合到
A. Alpas^ 和 C. N. Reid^(书面讨论)—对通过开口套筒工艺冷扩孔的表面进行检查,发现螺旋套筒外端存在台阶。研究了该台阶的角度位置对冷扩 6000 系列铝合金(英国名称 HE9)疲劳寿命的影响,所得结果支持本文作者报告的结论。在缩径截面(100 x 19 x 1.67 毫米)上钻有一个直径为 5 毫米的孔的样品,在 520°C 下进行 40 分钟的固溶处理,淬火,然后在 170°C 下时效 22 小时,然后进行冷扩。在冷膨胀过程中,台阶的位置受到控制,并使用了两个方向:(1)台阶的角度位置与纵轴重合的样品(指定为“12 点钟”位置)和(2)台阶的角度位置在横向的样品(“3 点钟”位置)。膨胀量保持在 3% 到 3.5% 之间。疲劳试验在恒定应力幅度 a^ = 48 MPa 和应力比 R = 0.05 下进行。表 4 总结了在每个台阶位置冷膨胀的样品的疲劳寿命。该表还包括冷膨胀后进行退火处理(170°C,2 小时)的样品的平均寿命。选择这种方式是为了在不过度老化的情况下显著释放应力。使用“学生 t 检验”的统计分析表明,冷加工样品的两个取向的平均寿命之间没有显著差异(t = 0.68)。同样,应力消除试样的两个取向之间也没有显著差异(t = 0.65)。我们得出结论,台阶在试件中构成了一个微不足道的缺口。这得到了以下观察结果的支持:在某些 CX3 和 CXSR3 样品中,疲劳裂纹甚至没有与台阶相交。此外,第一个疲劳裂纹没有表现出在孔的“台阶”侧而不是在相反侧形成的偏好——这发生在五分之二的 CX3 样品和五分之三的 CXSR3 试件中。疲劳裂纹总是在孔与平板试件的一个表面的交汇处形核。虽然我们的M. W. Ozelton 和 T. G. Coyle(作者结束语)—作者感谢 A. Alpas 和 C. N. Reid 的评论,他们支持我们关于管子位置对开口套管冷加工铝合金疲劳寿命影响的观察。
金属在受到重复的循环载荷时会出现疲劳损坏。每个循环中的应力大小不足以在单个循环中导致失效。因此,需要大量的循环才能导致疲劳失效。重要的是,疲劳裂纹在远低于金属单调抗拉强度的应力水平下成核和生长。裂纹以非常小的量连续前进,其增长率由载荷大小和部件的几何形状决定。人们对钢的疲劳进行了大量研究。在此背景下,首先简要描述了碳钢和低合金钢中的主要微观结构以及这些微观结构的相变。随后,描述了疲劳机制的一些基本方面的知识,特别强调了疲劳寿命预测方法的发展。