后顶叶皮层(PPC)在整合来自不同方式的感觉输入以支持适应性行为方面起着关键作用。PPC中的神经元活性反映了行为任务之间的感知决策,但是PPC的机理参与尚不清楚。在视听变更检测任务中,我们检验了以下假设:PPC是从两种不同模态的嘈杂输入之间进行的,并有助于确定发生感觉变化的方式。在训练有素的雄性小鼠中,我们发现了与任务相关的视觉和听觉刺激,试验史以及即将到来的行为反应的广泛的单神经元和人群级编码。,尽管这些丰富的神经相关性,理论上足以解决任务,但PPC的光学遗传失活并不影响视觉或听觉性能。因此,尽管神经相关忠实地跟踪感觉变量并预测行为反应,但PPC与视听变化检测无关。此功能解离质疑在视听变化检测过程中,感觉与任务相关的活动在顶叶关联电路中的作用。此外,我们的结果强调了在探索感知和行为的神经基础时与机械介入相关的分解功能的必要性。
大脑 - 用于运动恢复的计算机接口(BCIS)通常会从其主电机皮层(M1)中的神经活动中解码用户的意图,并使用此信息来启用外部设备的“心理控制”。在这里,我们认为M1的活动具有太少和太多的信息,无法进行最佳解码:太少了,因为超出其超出其的许多区域都会贡献独特的电动机,并且具有与运动相关的信息,而与运动相关的信息缺乏或以其他方式从M1活动中解析;太多了,在那个电机命令中,与注意力和反馈处理等非运动过程纠缠在一起,从而极大地阻碍了解码。我们认为,通过整合来自多个大脑区域的其他信息来开发BCIS,可以更好地解释用户的意图,从而规避这两个挑战。
图 2. ZnO-TFTs 阵列的电气、机械和光学特性。 (A) VD = 5V 时具有不同 W/L 比的 TFT 的传输曲线。 (B) W/L = 80/5 的 TFT 的输出特性,显示漏极电流 (ID) 与 VD 的关系,VG 从 -1 V 变化至 5 V(步长 = 1 V)。 (C) 一个阵列的十二个 ZnO-TFTs 电极的传输特性。红线为平均值。 (D) 来自同一阵列的十二个 ZnO-TFTs 电极的跨导。蓝线为平均值。 (E) ZnO-TFTs 电极在弯曲半径为 15 cm 的情况下经过 10 次弯曲循环后仍保持稳定的电气特性。 (F) ZnO-TFTs 阵列的透射光谱。插图是 3 × 4 ZnO-TFTs 阵列的光学图像,显示了其高透明度。白色框架标记电极阵列。比例尺:2 毫米。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2023年6月1日。; https://doi.org/10.1101/2022.04.27.489466 doi:biorxiv Preprint
人类原发性体感皮质(S1)中的心脏内微刺激(ICM)已被用于成功引起自然的感觉。然而,诱发感觉的背后的神经生理机制仍然未知。要了解特定刺激参数如何引起某些感觉,我们必须首先了解大脑中这些感觉的表示。在这项研究中,我们记录了植入S1,前体皮层和男性参与者的后顶叶皮层的皮质内微电极阵列,执行了体感成像任务。所想象的感觉是在同一参与者的同一阵列中由ICMS先前引起的感觉。在尖峰和局部场上的记录中,神经信号的特征都可用于对不同的想象感觉进行分类。这些功能随着时间的推移而显示稳定。感觉运动皮层仅在图像任务过程中编码想象中的感觉,而后顶叶皮层则用提示呈现开始编码感觉。这些发现表明,感觉体验的不同方面可以从整个皮质感觉网络中的内部记录的人类神经信号分别解码。这些独特的感官表示基础的活动可能会告知刺激参数,以通过ICMS在未来的工作中通过ICMS进行特定的感觉。
在某些类型的冥想中,例如正念和禅宗,呼吸是吸引人的重点,而在过度,短期的厌氧运动中,肌肉成为注意力的焦点。因此,在两种努力中,人们的注意力都集中在身体的某些效果上。冥想和锻炼通常为人类提供精神上的茶点。我们假设同一大脑区域都被人类的两种努力激活。为了审查这一假设,我们让参与者参与了3个任务:冥想,表现和控制任务。在每项任务后,参与者进行了2张检验以吸引他们的思想,而使用近红外光谱(NIR)同时监测血液血红蛋白水平的变化。有17名参与者(20-24岁; 11名男性,6名女性)。我们将快速转换(FFT)分析应用于NIRS波数据,并计算了(1)冥想和对照之间的FFT数据的相关系数,(2)锻炼和控制,以及(3)在Orbitofrontal Cortex(OFC)(OFC)和背侧外侧额叶前frontal frontal frontal corortex(dlpffc)中,dlpffc(dlpffc)在dlpfcc cons in Chare in Chare conthement in Chare in Chrenthement in Chare in Chare in Chincors(dlpffc)。在冥想和运动分析中检测到OFC和DLPFC之间的相关系数有显着差异,信号源分析证实,NIRS波从左右OFC边缘(即,左右窗)向中心传播。我们的结果表明,冥想和锻炼都激活了OFC,这与情绪反应和运动行为有关,从而导致精神茶点。
标题 初级运动皮层的作用:不仅仅是运动执行 作者 Sagarika Bhattacharjee、Rajan Kashyap、Turki Abualait、Shen-Hsing Annabel Chen、Woo-Kyoung Yoo 和 Shahid Bashir 来源 Journal of Motor Behavior,(2020) 由 Taylor & Francis (Routledge) 出版 版权所有 © 2020 Taylor & Francis 这是 Taylor & Francis 于 2020 年 2 月 3 日在 Journal of Motor Behavior 上发表的一篇文章的已接受手稿,可在线获取:https://www.tandfonline.com/doi/abs/10.1080/00222895.2020.1738992 注意:由于出版过程(例如复制编辑和格式化)而引入的更改可能不会反映在本文档中。有关该作品的最终版本,请参阅已发布的来源。
半个世纪以来,普通实验室啮齿动物的桶状皮层一直是研究地形图,神经图案和可塑性的形成,在发育和成熟度中的形成非常有用。我们介绍了关于桶的发现方式的历史观点,以及此后如何成为发展性神经科学家的主力,并研究了大脑可塑性和脑电路的活动依赖性建模。对这种感觉系统的特殊值得注意的是一种细胞模式,它是由源自鼻须围绕的感觉受体得出的信号引起的,并以中央传播到脑干(桶形),丘脑(枪管)(枪管)(枪管)和新皮层(桶)。出生后不久对感觉受体的损伤会导致系统的所有级别可预测的模式改变。小鼠遗传学增加了我们对枪管的构造方式的理解,并揭示了将轴突生长和细胞规范的分子程序的相互作用以及活性依赖性机制。对这种感觉系统作为一种神经生物学模型存在着不断提高的兴趣,该模型在形态学和生理水平上都研究了体体,模式和可塑性的发展。本文是纪念神经科学学会50周年的一组文章的一部分。
高阶认知的核心特征是通过通过远程连接链接的分布式皮质网络实现的。但是,这些连接在生物学上很昂贵,尚不清楚计算优势如何克服相关的布线成本。我们的研究通过探索远程功能连接与局部皮层微体系结构之间的关系来研究了这个问题。具体而言,我们的工作(i)使用静息状态fMRI和皮质皮层地质距离映射进行了远距离的皮质连接性,(ii)评估了多个距离连接反映局部脑微体系结构的距离,(iii)研究了通过远程连接相连的区域相似性。对两个独立数据集的分析表明,感觉和电机区域具有更多的短距离连接模式,而跨模式关联皮层(包括默认模式网络的区域)的特征是分布式,远距离连接。确认性荟萃分析表明,这种地形差异反映了认知功能的转变,从感知/行动到情感和社会认知处理。分析在同一参与者中以及验尸组织学和基因表达中对体内MRI的分析确定,功能连通性距离中的梯度与皮质微体系结构中存在的梯度平行。此外,发现远程连接可以将关联皮层的空间远程区域与出乎意料的相似微体系结合起来。这些发现提供了新的见解,介绍了跨模式关联皮层中分布式功能网络的组织如何有助于认知,因为它们表明远距离连接将遥远的关联皮层岛与相似的微观结构特征联系起来。
摘要的分期夹带被认为可以在全球范围内坐落在不同结构(例如海马和新皮层)跨不同结构的活性。在识别和决策过程中,最佳处理感觉输入可能需要此协调。In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (DHC)。大鼠区分以仅触觉,仅视觉或触觉和视觉方式呈现的两个3D对象。在任务参与期间,S1BF,V2L,PER和DHC LFP信号显示出连贯的theta波段活性。我们发现单细胞尖峰活性的相位夹带到S1BF,V2L,PER和DHC中的局部记录以及海马theta活性。虽然在任务试验的持续时期期间发生海马尖峰的阶段夹带发生在局部theta振荡中,并且对行为和模态的行为和模态,体感和视觉皮质细胞无可置疑,仅在刺激效果期间被置于刺激期间,主要是在其首选模式中(S1BF,触觉,crossit crossit; v2;刺激表现(S1BF:Visual; V2L:触觉)。这种效果无法通过发射速率或theta振幅的调制来解释。因此,海马细胞是长时间时期的相夹具,而感觉和周围神经元在感觉刺激呈现过程中被选择性地夹住,为活动协调提供了短暂的时间窗口。