摘要:诸如ChatGpt和其他大型语言模型(LLM)等变压器网络的功能引起了世界的关注。其性能基础的至关重要的计算机制依赖于将完整的输入序列(例如,句子中的所有单词)转换为一个长的“编码向量”,该序列使变压器可以在自然序列中学习长距离的时间依赖性。具体来说,应用于此编码向量的“自我注意力”通过计算输入序列中的单词对之间的关联来增强变形金刚中的时间上下文。我们建议,跨单个皮质区域或以整个脑规模的多个区域传播的神经活动波可以实施类似的编码原理。通过将最新的输入历史记录到每个时间时刻,皮层波可以使时间上下文从感觉输入的序列中提取,这是变压器中使用的计算原理。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本于2024年8月8日发布。 https://doi.org/10.1101/2024.08.08.607204 doi:biorxiv preprint
经验在皮质反馈组织(FB)组织中的作用仍然未知。我们测量了从后期(LM)视觉区域到小鼠原代视觉皮层(V1)的层(LM)视觉区域(lm)视觉区域(lm)视觉区域(lm)视觉区域(v1)的视网膜和非术的视觉体验上操纵视觉体验的效果。lm输入平均与正常和深色饲养的小鼠中的V1神经元匹配,但视觉上的博览会可将空间重叠输入的分数减少到V1。fb输入来自L5的输入比L2/3传达更多的环境信息。L5的LM输入的组织取决于其方向的偏好,并被黑暗饲养所破坏。这些观察结果是通过模型概括的,在这种模型中,VI-SUAL经验最大程度地减少了LM输入和V1神经元之间的接受字段重叠。我们的结果提供了一种机制,可以使周围调制对视觉体验的依赖性,并提出如何在皮质回路中学习预期的区域间共激活模式。
灰质杂质(GMH)是由脑发育过程中神经元异常迁移引起的。皮质带异位症(SBH)或双层皮质是GMH的罕见变体,主要影响癫痫患者(PWE)不同程度的智力低下。我们介绍了一名25岁妇女的案例,该妇女因概括性癫痫发作而被录取给我们三级医院的神经病学系。她的母亲有正常的产前时期和劳动史。有立即哭泣和正常外观,脉搏,鬼脸,活动和呼吸(APGAR)得分的历史。她延迟了里程碑,这影响了儿童发展的各种类别。体格检查显示全球发育迟缓。实验室值,包括全血细胞计数,血清钙和动脉血液测试,均在正常范围内。脑电图显示出明显的异常暗示性癫痫。大脑的MRI在两个脑半球中显示出连续的灰色物质带,与皮层平行,表明双层皮质综合征(DCS)。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年7月30日。; https://doi.org/10.1101/2024.07.29.605705 doi:biorxiv Preprint
脑机接口 (BCI) 解码器假设神经活动受到约束,这些约束既能反映科学信念,又能产生可处理的计算。最近的科学进展表明,神经活动的真正约束,尤其是其几何形状,可能与大多数解码器所假设的约束大不相同。我们设计了一个解码器 MINT,以接受可能更合适的统计约束。如果这些约束是准确的,MINT 应该优于明确做出不同假设的标准方法。此外,MINT 应该与可以隐式地从数据中学习约束的表达性机器学习方法相媲美。MINT 在各项任务中表现良好,表明其假设与数据非常匹配。在我们进行的每项比较中,MINT 都优于其他可解释方法。在 42 次比较中,MINT 在 37 次中优于表达性机器学习方法。MINT 的计算简单,随着神经元数量的增加而扩展,并产生可解释的数量,例如数据可能性。 MINT 的性能和简单性表明它可能是许多 BCI 应用的有力候选者。24
©2024作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http:// creativecommons.org/licenses/4.0/。
灰质杂质(GMH)是由脑发育过程中神经元异常迁移引起的。皮质带异位症(SBH)或双层皮质是GMH的罕见变体,主要影响癫痫患者(PWE)不同程度的智力低下。我们介绍了一名25岁妇女的案例,该妇女因概括性癫痫发作而被录取给我们三级医院的神经病学系。她的母亲有正常的产前时期和劳动史。有立即哭泣和正常外观,脉搏,鬼脸,活动和呼吸(APGAR)得分的历史。她延迟了里程碑,这影响了儿童发展的各种类别。体格检查显示全球发育迟缓。实验室值,包括全血细胞计数,血清钙和动脉血液测试,均在正常范围内。脑电图显示出明显的异常暗示癫痫。大脑的MRI在两个脑半球中显示出连续的灰色物质带,与皮层平行,表明双层皮质综合征(DCS)。
1加利福尼亚理工学院的生物学与生物工程;美国加利福尼亚州91125,帕萨迪纳。2医学物理学巴黎,Inserm,CNRS,ESPCI巴黎,PSL研究大学; 75012巴黎,法国。3法国巴黎生物医学超声的INSERM技术研究加速器4 USC凯克医学院神经外科系;美国加利福尼亚州洛杉矶90033,美国。5 USC神经园林中心,USC凯克医学院;美国加利福尼亚州洛杉矶90033,美国。6兰乔·洛斯·阿米戈斯国家康复中心;美国加利福尼亚州90242,美国。7 T&C Chen Brain-i界接口中心,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 8南加州大学生物医学工程;美国加利福尼亚州洛杉矶。 9化学与化学工程,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 10 Andrew和Peggy Cherng医学工程系,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 11霍华德·休斯医学院;美国加利福尼亚州91125,帕萨迪纳。 a a型侧面侧面皮层(LIP)位于后顶叶皮层(PPC)内是将空间信息转化为准确的Saccadic眼球运动的重要区域。 尽管进行了广泛的研究,但我们并不完全了解唇内预期运动方向的功能解剖结构。 这部分是由于技术挑战所致。 电生理记录只能记录来自PPC的小区域,而fMRI和其他全脑技术缺乏足够的时空分辨率。7 T&C Chen Brain-i界接口中心,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。8南加州大学生物医学工程;美国加利福尼亚州洛杉矶。 9化学与化学工程,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 10 Andrew和Peggy Cherng医学工程系,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 11霍华德·休斯医学院;美国加利福尼亚州91125,帕萨迪纳。 a a型侧面侧面皮层(LIP)位于后顶叶皮层(PPC)内是将空间信息转化为准确的Saccadic眼球运动的重要区域。 尽管进行了广泛的研究,但我们并不完全了解唇内预期运动方向的功能解剖结构。 这部分是由于技术挑战所致。 电生理记录只能记录来自PPC的小区域,而fMRI和其他全脑技术缺乏足够的时空分辨率。8南加州大学生物医学工程;美国加利福尼亚州洛杉矶。9化学与化学工程,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。10 Andrew和Peggy Cherng医学工程系,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。 11霍华德·休斯医学院;美国加利福尼亚州91125,帕萨迪纳。 a a型侧面侧面皮层(LIP)位于后顶叶皮层(PPC)内是将空间信息转化为准确的Saccadic眼球运动的重要区域。 尽管进行了广泛的研究,但我们并不完全了解唇内预期运动方向的功能解剖结构。 这部分是由于技术挑战所致。 电生理记录只能记录来自PPC的小区域,而fMRI和其他全脑技术缺乏足够的时空分辨率。10 Andrew和Peggy Cherng医学工程系,加利福尼亚理工学院;美国加利福尼亚州91125,帕萨迪纳。11霍华德·休斯医学院;美国加利福尼亚州91125,帕萨迪纳。a a型侧面侧面皮层(LIP)位于后顶叶皮层(PPC)内是将空间信息转化为准确的Saccadic眼球运动的重要区域。尽管进行了广泛的研究,但我们并不完全了解唇内预期运动方向的功能解剖结构。这部分是由于技术挑战所致。电生理记录只能记录来自PPC的小区域,而fMRI和其他全脑技术缺乏足够的时空分辨率。在这里,我们使用功能性超声成像(FUSI),这是一种具有高灵敏度,大空间覆盖范围和良好空间分辨率的新兴技术,以确定如何在PPC跨PPC编码运动方向。我们使用FUSI记录了PPC中脑血容量的局部变化,因为两只猴子在整个视野中对目标进行了记忆引导的扫视。然后,我们分析了PPC每个冠状平面内首选方向反应场的分布。嘴唇中的许多子区域表现出强烈的定向调整,在几个月到几年之间是一致的。这些介质图在嘴唇中揭示了一个高度异质的组织,其中许多相邻的皮层编码不同的方向。唇部有一个粗糙的地形,前唇代表更对侧的向上运动,而后唇则代表了更对侧的向下运动。这些结果解决了我们对Lip功能组织的理解:贴片的邻里组织和整个LIP的更广泛的组织。这些发现是通过在数月到几年中跟踪相同的唇部种群的方法来实现的,并在以前使用fMRI或电生理学方法无法实现的方向特异性的介观图。c ommon缩写使用CBV:脑血体积FUSI:功能性超声成像GLM:通用线性型号IPS:内部内沟LDA LDA:线性判别分析LFP:局部田间电势LIP:侧向内部室内区域
体感皮层的皮层内微刺激 (ICMS) 可激活刺激电极周围的神经元并引发触觉。然而,目前尚不清楚皮层神经元的直接激活如何影响它们处理来自皮肤的其他触觉输入的能力。在左、右体感皮层均植入慢性微电极阵列的人体中,我们在同时提供 ICMS 的同时向皮肤施加机械振动,并量化机械和电刺激对触觉的影响。我们发现阈下 ICMS 增强了皮肤触摸的敏感度,证据是振动触觉检测阈值降低(中位数:-1.5 dB),但阈下振动不会系统性地影响 ICMS 的可检测性。超阈值振动导致 ICMS 阈值增加(中位数:2.4 dB),但超阈值 ICMS 对振动触觉阈值影响不大。 ICMS 引起的振动触觉敏感性增强与位置有关,刺激电极的投射场和振动刺激的位置距离越远,效果大小越小。这些结果表明,仅对皮质进行有针对性的微刺激就可以局部增强触觉敏感性,有可能恢复或加强受伤后保留的触觉。