中苏门答腊盆地是一个具有巨大石油和天然气潜力的沉积盆地。利用这一潜力所做的努力之一是利用地震方法进行地球物理勘探。地震方法是提供地球地下状况(例如层结构、地质结构、碳氢化合物指标以及储层的物理性质)清晰图像的最优秀方法。本研究采用了地震反演方法和地震属性方法。使用的地震属性是均方根 (RMS) 和包络属性。同时,所采用的地震反演是声阻抗反演(AI)。 RMS 和包络属性有助于绘制地震波的最大振幅,这些地震波反映了地表以下的密度或岩性差异,并指示了具有储层潜力的区域的存在。声阻抗反演可以绘制某一层的声阻抗值,可以有效定量指示岩性、孔隙度和储层特征的差异。均方根 (RMS) 和包络属性显示“FAP”油田 Telisa 地层顶部的亮点区域,而日志数据显示 Telisa 地层中存在碳氢化合物。研究区碳酸盐岩储层声阻抗值分布在15000((Ft/s)*(g/cc))~30000((Ft/s)*(g/cc))范围内。 “FAP”油田碳酸盐岩储层孔隙度为0.18~0.3(V/V),密度为2.2~2.4(g/c3)。关键词:苏门答腊盆地中部,RMS 属性,包络属性,反演
原告是开发商,他们声称市政府违反了第 760.26 条,因为他们的经济适用房联排别墅项目基于其资金来源(经济适用房融资)而受到歧视。通过第三次修改后的投诉,开发商根据该法案第 760.35(4) 条寻求对市政府的补救措施,包括宣告性救济、禁令性救济、损害赔偿以及律师费和费用。请参阅佛罗里达州法令(2021 年)第 760.35(4) 条。市政府提出驳回申诉,称主权豁免保护市政府免受开发商的索赔。审判法院驳回了动议,没有给出任何解释。
背景肺癌是全球癌症死亡的主要原因[1]。非小细胞肺癌(NSCLC)约占肺癌的85%[2]。目前,NSCLC的主要治疗方法是化疗、手术、放疗和靶向治疗[3],但五年生存率低至18%,且可能导致严重的副作用和耐药性[4,5]。因此,迫切需要开发治疗非小细胞肺癌的有效药物。地球总物种的25%由海洋物种组成。这些化合物中的许多具有特殊的生物活性和化学结构,可作为许多疾病的潜在药物[6,7]。这些海洋植物提取物大多已被证实具有抗癌[8,9]、抗炎[10,11]、抗病毒[12,13]等作用。从海洋植物提取物中提取的海洋药物受到越来越多的关注。褐藻是海洋中的一种大型藻类。岩藻固醇是褐藻乙醇提取物中的一种藻类植物固醇,已被证实具有多种生物活性,包括抗氧化[14-16]、抗炎[17-19]、抗癌[20]、抗菌[21]、抗抑郁[22]等。先前的研究报道了岩藻固醇在抗宫颈癌[20]、抗白血病[23]、抗结直肠癌[24]等方面的作用,但关于岩藻固醇治疗非小细胞肺癌的机制研究很少,其潜在的治疗靶点和相关途径尚未详细报道。
1 KBR,Inc,NASA AMES研究中心,加利福尼亚州莫菲特菲尔德,美国2材料科学部,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州94720,美国3美国3号物理学系美国伯克利,94720,美国5材料科学与工程系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学94305,美国6斯坦福大学材料与能源科学研究所,SLAC国家加速器实验室,加利福尼亚州Menlo Park,加利福尼亚州Menlo Park,94025,美国7机械工程和材料科学系,纽约大学,纽约大学,纽约市765111111111。 OX1 3PJ,英国9 Kavli Energy Nanoscience Institute,位于伯克利,伯克利94720,美国
1. Sijm, J.、Janssen, G.、Morales-Espana, G.、van Stralen, J.、Hernandez-Serna, R. 和 Smekens, K.,2020 年。《大规模储能系统在荷兰能源系统中的作用,2030-2050 年》。 TNO 报告 2020 P11106。 2. Groenenberg, R.、Juez-Larré, J.、Goncalvez, C.、Wasch, L.、Dijkstra, H.、Wassing, B.、Orlic, B.、Brunner, L.、van der Valk, K.、Hajonides van der Meulen, T. 和 Kranenburg-Bruinsma, K.,2020 经济经济学模型。能源存储系统。 TNO 报告 2020 R12004 3. Winters, E.、Puts, H.、Van Popering-Verkerk, J. 和 Duijn, M.,2020 年。《大规模储能的法律和社会嵌入性》。 TNO 报告 2020 R11116。 4. Van der Valk, K.、Van Unen, M.、Brunner, L. 和 Groenenberg, R.,2020 年。压缩空气地下储存 (CAES) 和氢气地下储存 (UHS) 相关风险清单,以及 UHS 与地下储存风险的定性比较。天然气地下储存设施(UGS)。 TNO 报告 2020 R12005
冰被认为是世界上的主要粮食作物,提供了世界 20% 的膳食能量。在气候变化情景下,开发包括耐盐在内的非生物胁迫抗性水稻基因型对于可持续水稻生产非常必要。盐分是全球水稻生产最重要的障碍之一,尤其是在沿海地区。水稻受益于新的育种技术,例如 CRISPR 主导的进化、CRISPR-Cas 和基本编辑器,最近已用于水稻以实现成功的基因组测序。通过这种方式,我们可以专注于耐盐水稻的基因组编辑,并根据其传统和先进方法找到最佳来源,以提高其抗性效果以及其可在各地广泛推广的生产力。
建筑基础设施中的供暖和制冷系统使用传统材料,这些材料会产生大量的能源消耗和浪费。相变材料 (PCM) 被认为是一种很有前途的热能储存候选材料,可以提高建筑系统的能源效率。在这里,我们设计和开发了一种新型的盐水合物基 PCM 复合材料,它具有高储能容量、相对较高的热导率和出色的热循环稳定性。通过使用葡聚糖硫酸钠 (DSS) 盐作为聚电解质添加剂,增强了 PCM 复合材料的热循环稳定性,这显著减少了盐水合物的相分离。通过添加各种石墨材料和硼砂成核剂,复合材料的储能容量和热导率得到了增强。DSS 改性复合材料的热循环稳定性显著提高,超过 100 次热循环都没有降解。最终的 PCM 复合材料相对于纯盐水合物的能量储存容量增加了 290%,热导率增加了约 20%。此外,所开发的 PCM 复合材料可以大规模生产,并有可能改变建筑基础设施中供暖/制冷系统的未来。
签名页 下列签名人确认已同意并接受以下方案,并且首席研究员同意按照批准的方案开展试验,并将遵守《人用药品(临床试验条例 2004 年)(SI 2004/1031)、修订条例(SI 2006/199828)以及临床试验条例的任何后续修订、GCP 指南、申办方的 SOP 和其他经修订的监管要求中概述的原则。 我同意确保在未经申办方事先书面同意的情况下,不得将本文件中包含的机密信息用于除评估或开展临床研究之外的任何其他目的。 我还确认,我将通过出版物或其他传播工具向公众公布研究结果,不会出现任何不必要的拖延,并将对研究进行诚实、准确和透明的说明;并且将解释与本协议中计划的研究任何差异。 首席研究员:
他于 2021 年获得伦斯勒理工学院核工程博士学位,期间致力于开发熔盐反应堆 (MSR) 系统中不溶性裂变产物传输的质量传递建模方法。他的研究生工作由能源部核能大学计划 (DOE NEUP) 奖学金资助,他于 2017 年获得该奖学金。
