A0A011P7F8 Mannheimia granulomatis MgrCas9 1049 65.5 A0A0A2YBT2 Gallibacterium anatis IPDH697-78 GanCas9 1035 59.7 A0A0J0YQ19 Neisseria arctica NarCas9 1070 70.4 A0A1T0B6J6 [Haemophilus felis HfeCas9 1058 65.3 A0A1X3DFB7 Neisseria dentiae NdeCas9 1074 66.4 A0A263HCH5 Actinobacillus seminis AseCas9 1059 66 A0A2M8S290 Conservatibacter flavescens CflCas9 1063 64.2 A0A2U0SK41 Pasteurella langaaensis DSM 22999 PlaCas9 1056 63.9 A0A356E7S3巴斯德氏菌 PstCas9 1076 63 A0A369Z1C7 副流感嗜血杆菌 Hpa1Cas9 1056 64.8 A0A369Z3K3 副流感嗜血杆菌 Hpa2Cas9 1054 65.2 A0A377J007 皮特曼嗜血杆菌 HpiCas9 1053 65.2 A0A378UFN0 脱氮伯氏菌(脱氮奈瑟菌)
(a)果蝇和D. ananassae中eIF4E1基因组社区的同步比较。薄的下面箭头指示了DNA链,其中基因– EIF4E1位于D. melanogaster(顶部)和D. ananassae(底部)基因组中。指向左侧的细箭头表明eif4e1在D. ananassae和D. melanogaster中的负( - )链上。指向EIF4E1的方向相同方向的宽基因箭头相对于薄的下层箭头在相同的链上,而指向EIF4E1相反方向的宽基因箭头相对于薄的底层箭头相反。白色基因箭头D. Ananassae表示与Melanogaster中相应基因的矫形学。D. ananassae基因箭头中给出的基因符号表示D. melanogaster中的直系同源基因,而基因座标识符是特定于D. ananassae的。(b)GEP UCSC轨道数据中心中的基因模型(Raney等,
(A) 果蝇 (Drosophila melanogaster) 和果蝇 (D. yakuba) 中 eIF4E1 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (顶部) 和果蝇 (D. yakuba) (底部) 基因组中参考基因 eIF4E1 所在的 DNA 链。指向右侧的细箭头表示 eIF4E1 在果蝇 (D. melanogaster) 中位于正 (+) 链上,指向左侧的细箭头表示 eIF4E1 在果蝇 (D. yakuba) 中位于负 (-) 链上。指向与 eIF4E1 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向与 eIF4E1 相反方向的宽基因箭头相对于细箭头位于相反链上。果蝇 (D. yakuba) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因的直系同源。 D. yakuba 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符特定于 D. yakuba。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014 年)。D. yakuba 中 eIF4E1 的编码区显示在用户提供的 Track(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括 NCBI RefSeq 基因的 BLAT 比对(深蓝色,D. yakuba 的 Ref-Seq 基因比对)、D. melanogaster 蛋白质的 Spaln(紫色,D. melanogaster 的 Ref-Seq 蛋白质比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性和成年雄性的 RNA-Seq(分别为红色和浅蓝色;D. yakuba 的 Illumina RNA-Seq 读段比对)以及使用 D. yakuba RNA-Seq (SRP006203 - Graveley et al, 2010) 通过 regtools 预测的剪接点。显示的剪接点分别具有 232、500-999 和 >1000 的读取深度,支持读取为粉色、棕色和红色。 (C) 果蝇 (D. melanogaster) 中的 eIF4E1-PB (x 轴) 与果蝇 (D. yakuba) 中的直系同源肽 (y 轴) 的点图。左侧和底部表示氨基酸编号;顶部和右侧表示 CDS 编号,CDS 也以交替颜色突出显示。序列相似性降低的区域用红色圈出。 (D) 果蝇 (D. melanogaster) 中的 eIF4E1-PC (x 轴) 与果蝇 (D. yakuba) 中的直系同源肽 (y 轴) 的点图。序列相似性降低的区域用红色圈出。
(A) 果蝇 (Drosophila melanogaster) 和菠萝蜜 (D. ananassae) 中 Myc 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (顶部) 和菠萝蜜 (D. ananassae) (底部) 中目标基因 Myc 所在的 DNA 链。指向右侧的细箭头表示 Myc 在菠萝蜜 (D. ananassae) 和果蝇 (D.melanogaster) 中位于正 (+) 链上。指向与 Myc 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向 Myc 相反方向的宽基因箭头相对于细箭头位于相反链上。果蝇 (D. ananassae) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因的直系同源性。 D. ananassae 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符特定于 D. ananassae。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014 年)。D. ananassae 中 Myc 的编码区显示在用户提供的 Track(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括 NCBI RefSeq 基因的 BLAT 比对(深蓝色,D. ananassae 的 Ref-Seq 基因比对)、D. melanogaster 蛋白质的 Spaln(紫色,D. melanogaster 的 Ref-Seq 蛋白质比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性、成年雄性和沃尔巴克氏体治愈胚胎的 RNA-Seq(分别为红色、浅蓝色和粉色;D. ananassae 的 Illumina RNA-Seq 读数比对)以及使用 D. ananassae RNA-Seq 由 regtools 预测的剪接点(Graveley 等人,2011;SRP006203、SRP007906;PRJNA257286、PRJNA388952)。显示的剪接点的读取深度 >1000,支持读取为红色。(C)果蝇 Myc-PB 的点图(x 轴)与
研究 [12–15],这使得拟谷盗成为比较遗传学、分子生物学、进化和发育等不同生物过程的绝佳模型 [2, 10, 11]。鉴于果蝇的衍生生物学,拟谷盗也
研究 [12–15],这使得拟谷盗成为比较遗传学、分子生物学、进化和发育等不同生物过程的绝佳模型 [2, 10, 11]。鉴于果蝇的衍生生物学,拟谷盗也
1农业动物遗传学,育种和繁殖,教育部和猪遗传学和育种部关键实验室,农业和农村事务部,瓦兹洪农业大学,430070 Wuhan,P.R。R.中国。2 Yazhouwan国家实验室(YNL),Sanya Hainan 572025,P。R.China。 3瓦兹胡农业大学的可持续猪生产合作创新中心,430070 Wuhan,P。R.中国。 4 Hubei Hongshan实验室,Huazhong农业大学,Wuhan 430070,P。R.China。 5胰腺疾病实验室,吉安格大学医学院第一家附属医院,杭州310058,P。R.China。 这些作者也同样贡献:Dagang Tao,Bingrong Xu,Sheng Li和Hailong Liu。 *电子邮件:ssxie@mail.hzau.edu.cn; shzhao@mail.hzau.edu.cn; xyli@mail.hzau.edu.cn2 Yazhouwan国家实验室(YNL),Sanya Hainan 572025,P。R.China。3瓦兹胡农业大学的可持续猪生产合作创新中心,430070 Wuhan,P。R.中国。4 Hubei Hongshan实验室,Huazhong农业大学,Wuhan 430070,P。R.China。 5胰腺疾病实验室,吉安格大学医学院第一家附属医院,杭州310058,P。R.China。 这些作者也同样贡献:Dagang Tao,Bingrong Xu,Sheng Li和Hailong Liu。 *电子邮件:ssxie@mail.hzau.edu.cn; shzhao@mail.hzau.edu.cn; xyli@mail.hzau.edu.cn4 Hubei Hongshan实验室,Huazhong农业大学,Wuhan 430070,P。R.China。5胰腺疾病实验室,吉安格大学医学院第一家附属医院,杭州310058,P。R.China。这些作者也同样贡献:Dagang Tao,Bingrong Xu,Sheng Li和Hailong Liu。*电子邮件:ssxie@mail.hzau.edu.cn; shzhao@mail.hzau.edu.cn; xyli@mail.hzau.edu.cn
(A) 果蝇 (Drosophila melanogaster) 和果蝇 (D. miranda) 中 Pten 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (上) 和果蝇 (D. miranda) (下) 中目标基因 Pten 所在的 DNA 链。指向右侧的细箭头表示 Pten 在果蝇 (D. miranda) 中位于正 (+) 链上,指向左侧的细箭头表示 Pten 在果蝇 (D. melanogaster) 中位于负 (-) 链上。指向与 Pten 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向 Pten 反方向的宽基因箭头相对于细箭头位于反链上。果蝇 (D. miranda) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因直系同源,而黑色基因箭头表示非直系同源。灰色箭头表示在两个基因组邻域中都存在但不是同源的基因(在本例中为 Ror),在 D. miranda 中位于 Pten 的上游,但在 D. melanogaster 中位于 Pten 的下游。D. miranda 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符是 D. miranda 特有的。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014)。D. miranda 中 Pten 的编码区显示在用户提供的轨道(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括果蝇 (D. melanogaster) 蛋白质的 Spaln(紫色,果蝇 (D. melanogaster) 的 Ref-Seq 蛋白质比对)、NCBI RefSeq 基因的 BLAT 比对(深蓝色,果蝇 (D. miranda) 的 Ref-Seq 基因比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性和成年雄性的 RNA-Seq(分别为红色和浅蓝色;果蝇 (D. miranda) 的 Illumina RNA-Seq 读段比对)以及使用果蝇 (D. miranda) RNA-Seq (SRP009365) 由 regtools 预测的剪接点。所示的剪接点具有最小读取深度 10,其中 10-49、50-99 和 100-499 支持读取分别以蓝色、绿色和粉色表示。 (C) 果蝇 Pten-PB(x 轴)与果蝇直系同源肽(y 轴)的点图。左侧和底部标明氨基酸编号;顶部和右侧标明 CDS 编号,CDS 也以交替颜色突出显示。点图中的间隙表示序列相似性较低的区域。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,于2024年5月23日发布。 https://doi.org/10.1101/2024.02.14.580413 doi:Biorxiv Preprint