plk1是细胞周期的主要调节剂,其功能范围从有丝分裂承诺,中心体成熟,双极纺锤体形成,染色体分离,染色体分离,在细胞因子中的毛茸茸形成,共同防止基因组不稳定性和可预防基因组不稳定性和对女子细胞的传播到子细胞[1,2](图1)。在其在有丝分裂过程中的作用外,PLK1还是DNA复制,DNA损伤响应(DDR),G2 DNA损伤检查点,染色体动力学和微管动力学的调节剂,其与这些途径中涉及的几个关键因素的相互作用和磷酸化相互作用[3,4]。PLK1在细胞周期的各个阶段的协调依赖于空间和时间调节,主要是通过转录和翻译后修饰[2,5,6]。PLK1表达模式受到动态控制,并且与正常成人组织的细胞周期进程有关[6,7]。通常在相间的相间较低,PLK1蛋白水平在整个S相逐渐增加,并在G2/m相中达到最大值。然后,它们在有丝分裂后大大降解[4,5,7]。plk1表达(在mRNA和蛋白质上
频谱也很明显。很明显,2D层正在3D表面进行快速转换,并在光辐射下失去了其特征。从相似的光照射条件下记录的吸收光谱进一步证实了这一方面(图1D)。在图1E中记录的差异吸收光谱中,可以更好地看到吸收中的这些变化。我们还分别用可见光照射了2D和MAPBI 3膜。在相似的辐照时间下,吸收峰没有重大变化(图S4)。在图1 C和D中光辐射过程中的发射和吸收变化表明,沉积在3D钙钛矿上的2D膜在可见的照射下是不稳定的,并且经历了转化。这进一步表明我们创建的2D/3D接口最初会随着持续的照射而消失。我们将2D钙钛矿层的这种不稳定的行为归因于较大阳离子(pea +)从(PEA)2 PBI 4的扩散到散装MAPBI 3中,从而在3D相中导致同质化。
相场方法的思想可以追溯到 [22] 和 [30] 的开创性工作。从那时起,它已成功应用于许多科学和工程领域。相场法使用辅助变量 ϕ(相场函数)来局部化相并用一层厚度较小的层来描述界面。相场函数在两个相中分别取两个不同的值(例如 +1 和 −1),并在整个界面上平滑变化。在相场模型中,界面被视为过渡层,在该过渡层上某些物理量会连续但急剧地发生变化。相场模型可以从变分原理自然推导出来,即通过最小化整个系统的自由能。因此,推导出的系统满足能量耗散定律,这证明了其热力学一致性并可得到一个数学上适定的模型。此外,能量定律的存在为设计能量稳定的数值方案提供了指导。相场法现在已成为研究界面现象的主要建模和计算工具之一(参见[8–13,20,25,26]及其参考文献)。
b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
在过去的几年中,晶体拓扑已在光子晶体中使用,以实现边缘和角落的状态,从而增强了潜在的设备应用的光 - 物质相互作用。然而,当前用于对散装拓扑结晶相分类的带理论方法无法预测任何结果边界 - 定位模式的存在,定位或光谱隔离。虽然不同晶相中的材料之间的界面必须具有某种能量的拓扑状态,但这些状态不必出现在带隙内,因此可能对应用没有用。在这里,我们得出了一类局部标记,用于识别由于结晶对称性以及相应的拓扑保护量度。作为我们基于真实空间的方法本质上是局部的,它立即揭示了拓扑边界 - 定位状态的存在和鲁棒性,从而产生了设计拓扑结晶异质结构的预测框架。除了启用设备几何形状的优化外,我们预计我们的框架还将为依赖空间对称性的其他类别的拓扑类别提供局部标记提供途径。
抽象的kagome金属显示出由于几何挫败感,扁平带,多体效应和非平凡拓扑而引起的竞争量子阶段。最近,在FEGE的抗铁磁阶段深处发现了一种新型的电荷密度波(CDW),这引起了由于与磁性密切的关系而引起的强烈关注。在这里,通过扫描隧道显微镜(STM),我们发现FeGE中的2×2 CDW非常脆弱,并且很容易被破坏到最初的1×1相中。发现小√3×√3CDW水坑与在生长样品中的2×2 CDW并存,并且也可以在CDW中断的中间过程中诱导,最终将转变为最初的1×1相。此外,在中断过程中,异国情调的中间CDW状态和独立的CDW核出现了。我们的第一原则计算在CDW波矢量周围的大动量区域中发现平面光学声子模式的平等软化,对应于具有近距离能量的众多竞争CDW。这可能导致CDW基态的强烈不稳定,负责STM观测。我们的发现提供了更多新颖的实验方面,以了解FEGE中的CDW,并建议类似Fege的Kagome金属是研究竞争CDW不稳定性物理学的理想平台。
锌Blende和Wurtzite阶段:DFT研究B. Ahmed,B。I。Sharma * Assam University Silchar,788011,印度氮化铝(ALN)是宽带III-V组,Aln在三种不同的晶格结构中展出。在这项工作中,我们根据密度函数理论(DFT),以修改的BECKE-JOHNSON通用梯度近似(MBJ-GGGA)作为交换潜力,研究了岩石(RS),Zincblende(Zb)和Wurtzite(WZ)(WZB)和Wurtzite(WZ)(WZB)相的不同结构和电子特性。在本计算中获得的结构晶格参数和能量带隙与可用的实验值一致。结构计算表明,最稳定的相是wurtzite相,亚稳态相是锌蓝的相。发现Rocksalt,Zincblende和Wurtzite相中的Aln带gap分别为6.33 eV,4.7 eV和5.6 eV。在岩石和锌蓝岩相的情况下,带盖是间接的,在wurtzite相的情况下进行了直接。(2020年10月14日收到; 2021年2月2日接受))关键词:晶体结构,结构优化,密度功能理论,能量带隙,状态的密度
有限时间动力学中非平衡量子系统的热力学行为包括能量涨落的描述,这决定了一系列系统的物理特性。此外,多体系统中的强相互作用显著影响非平衡动力学中的能量涨落统计。通过驱动瞬态电流来对抗各种动力学状态下的金属-莫特绝缘体转变的前兆,我们展示了增加多体相互作用如何显著影响能量涨落的统计,从而影响有限哈伯德链的可提取功分布。此类分布的统计特性,如其偏度及其在转变过程中的显著变化,可能与不可逆性和熵产生有关。即使对于缓慢的驱动速率,准量子相变也会阻碍平衡,增加过程的不可逆性,并在功分布中引起强烈的特征。在莫特绝缘相中,功涨落-耗散平衡被修改,不可逆熵产生主导功涨落。因此,在设计用于量子技术的小规模设备协议时,必须考虑相互作用驱动的量子相变对热力学量和不可逆性的影响。最终,这种多体效应也可以用于量子尺度的功提取和制冷协议。
在气溶胶或气相中,可以找到许多不同类别的大约7,357种不同类别的化学品(4)。tar(总气溶胶残基)是去除水和尼古丁后收集的固体的重量。焦油是粘稠的棕色物质,它染色牙齿,然后将手指变成黄棕色。焦油是被困在剑桥玻璃纤维过滤器中的材料,保留了所有颗粒物材料的99%。气态相由尼古丁组成,尼古丁是一种上瘾的物质,但在低剂量中,它相对无害,轻度刺激/松弛剂和一氧化碳。慢性碳一氧化碳暴露会在浓烟中增加羧基血红蛋白浓度高达10%,从而产生功能性贫血和相关的低氧血症(5)。为评估其中最重要的内容,本文遵循禽类和染色的准则(6),他们建议鉴定具有最大潜力的毒性作用的化学成分,特别是与癌症,呼吸道,呼吸道和心血管疾病相关的化学成分。对于CVD,氰化物,砷和齿条被认为是主要风险,而其他担忧是N-亚硝基胺和多环芳烃。这些问题,以及霍夫曼(7)生物活性化学物质清单,可用于将有毒化学物质与其他香烟烟中的其他化学物质区分开。
YMN 6 SN 6由两种类型的基于Mn的基于MN的kagome平面,它们沿着具有复杂磁相互作用的C轴堆叠。我们报告了从铁磁(FM)中的YMN 6 SN 6中进行的自旋重建,以组合两种不一致的自旋螺旋(SSS),这些螺旋螺旋(SSS)源自两种不同类型的Mn Kagome平面,由沿C-轴的沮丧的磁性交换驱动,并包括Hubbard u。不稳定的SSS的螺距角和波矢量约为89。3◦和〜(0 0 0.248),与实验非常吻合。我们采用通过交换相互作用构建的有效模型的哈密顿式模型来捕获两种不稳定的SSS的实验性观察到的非效法性质,这也解释了由于与相关性的抗fiferromagntic自旋交换而引起的FM-SS交叉。我们通过计算拓扑不变性和浆果曲率pro文件,进一步报告了在YMN 6 SN 6的不相称的SS相中具有自旋轨道耦合的拓扑镁的存在。在73 MEV匹配的能量景观中,狄拉克木元的位置与另一个实验报告。我们通过突出YMN 6 SN 6中的实验特征来证明结果的准确性。