测试峰值推力为 130 牛顿或更低、总冲量高达 100 牛顿秒的固体燃料火箭发动机。它测量了峰值推力、总冲量、燃烧时间、烟火延迟时间和最大壳体外部温度,所有相对精度均为最小预期值的 2%。这相当于优于 0.1%-)-
项目 PAL-ES2 – 4232 PAL-ES3 - 4233 产品代码 ATA 000TBA ATA 000TBA 测量方法 电导率法 测量范围 0.00 至 5.00% (g/100g) 0.0 至 33.0% (g/100ml) (测量蒸馏水稀释 10 倍的样品(按重量计算)。以百分比(g/100ml)表示稀释前的样品的盐浓度。) 分辨率 0.01%(盐浓度为 0.00 至 2.99%) 0.1g/100ml 0.1%(盐浓度为 3.0 至 5.0%) 测量精度 显示值 0.05% 显示值 +0.6g/100ml(盐浓度为 0.00 至 1.00%) 相对精度 + 小于 6% 相对精度小于5%(测量值为 10 至 33.0g/100ml)(盐浓度为 1.01 至 5.0%) 温度补偿 10 至 40°C(保证精度范围 15 至 35°C) 国际防护等级 IP65 防水 尺寸和重量 5.5 x 3.1 x 10.9cm,100g(仅主机) 电源 2 节 AAA 电池
在默认配置下,NEO-M8P 流动站将尝试根据收到的校正数据提供最佳定位精度。一旦收到 RTCM 3 消息的输入流,它将进入 RTK 浮动模式。一旦流动站解决了载波相位模糊度,它将进入 RTK 固定模式。当流动站处于 RTK 固定模式时,相对精度可以预期精确到厘米级。通常需要至少 2 分钟,流动站才能解决载波模糊度并从 RTK 浮动模式转到 RTK 固定模式。此时间段的长度称为收敛时间。
在长达几分钟的时间间隔内,低分米范围内的相对精度。该方法不需要第二个附近的基站接收器,也不需要任何(静态)初始化程序。这一事实大大降低了用户经常在恶劣的现场条件下操作时需要处理的复杂性。该方法利用消除模糊性,而不是努力估计每个相位测量都有偏差的这些未知量。本文推导了本构导航方程,并讨论了限制可能处理间隔的各种误差源的理论方面。特别分析了从初始位置的偏移集引起的几何误差。静态实验的结果证实了理论考虑。此外,还给出了所用 GPS 记录器的技术细节,并验证了两次飞行实验期间收集的数据,并将其与不同的参考解决方案进行了比较。
摘要。介绍了一种用于快速精确测量臭氧 (O 3 ) 的商用干式化学发光 (CI) 仪器。灵敏度为每 ppbv 臭氧 ∼ 9000 计数 s − 1。其精度完全取决于到达检测器 (光电倍增器) 的光子数量,即受量子噪声限制。因此,相对精度 (� O 3 /O 3 以 %) 遵循泊松统计,并与测量频率 f 的平方根和 O 3 混合比的倒数成比例:� O 3 /O 3 ∝ f 0 。5 · O − 0 。5 3 。在典型的 O 3 混合比介于 10 和 100 ppbv(和 1 bar)之间时,精度为 0.3–1.0 %,f = 10 Hz。最大测量频率为 50 Hz。描述了机械和电子设置以及仪器性能。给出了关于适当的入口管配置(入口管长度、采样流量)以及在固定地面平台和机载飞机上校准方式的建议。
• 带有耐环境封装的压力传感器 • 操作范围:压力:300 –1200 hPa。温度:-40 – 85 °C。• 压力传感器精度:± 0.002 hPa(或 ±0.02 m)(高精度模式)。• 相对精度:± 0.06 hPa(或 ±0.5 m)• 绝对精度:± 1 hPa(或 ±8 m)• IPx8 认证:暂时浸泡在 50m 深的水中 1 小时 • 温度精度:± 0.5°C。• 压力温度灵敏度:0.5Pa/K • 测量时间:标准模式(16x)通常为 27.6 ms。最小值:低精度模式为 3.6 ms。• 平均电流消耗:压力测量为 1.7 µA,温度测量为 1.5 µA @1Hz 采样率,待机:0.5 µA。 • 电源电压:VDDIO:1.2 – 3.6 V,VDD:1.7 – 3.6 V。• 操作模式:命令(手动)、后台(自动)和待机。• 校准:使用系数单独校准以进行测量校正。• FIFO:存储最多 32 个压力或温度测量值。• 接口:I2C 和 SPI(均带有可选中断)• 封装尺寸:8 针 PG-VLGA-8-2,2.0 毫米 x 2.5 毫米 x 1.1 毫米。• 符合绿色产品(RoHS)标准
由小型低成本 GPS 记录设备收集的 L1 相位测量是导航方法的基础,旨在独立于任何辅助系统精确测量(飞行)轨迹。在一个移动接收器在两个不同时间进行的两个测量之间形成单一差异,可以在长达几分钟的时间间隔内实现低分米范围内的相对精度。该方法不需要空间或地面增强系统、第二个附近的基站接收器或任何(静态)初始化模式。这一事实大大降低了用户在极端偏远地区经常在恶劣的现场条件下操作时需要处理的复杂性。该方法利用消除歧义的优势,而不是努力估计每个相位测量都有偏差的这些未知量。本文推导了本构导航方程,并讨论了限制可能处理间隔的各种误差源的理论方面。该方法通过静态和动态参考数据进行了验证。最后,介绍了在凯尔盖朗群岛使用时差法测量信天翁动态翱翔的 GPS 活动的初步结果,并使用时差法处理了示例数据。
• 带环保封装的压力传感器 • 操作范围:压力:300 –1200 hPa。温度:-40 – 85 °C。• 压力传感器精度:± 0.002 hPa(或 ±0.02 m)(高精度模式)。• 相对精度:± 0.06 hPa(或 ±0.5 m) • 绝对精度:± 1 hPa(或 ±8 m) • IPx8 认证:临时浸泡在 50m 深水中 1 小时 • 温度精度:± 0.5°C。• 压力温度灵敏度:0.5Pa/K • 测量时间:标准模式(16x)通常为 27.6 ms。最小值:低精度模式为 3.6 ms。• 平均电流消耗:压力测量 1.7 µA,温度测量 @1Hz 采样率 1.5 µA,待机:0.5 µA。• 电源电压:VDDIO:1.2 – 3.6 V,VDD:1.7 – 3.6 V。 • 操作模式:命令(手动)、后台(自动)和待机。• 校准:使用系数单独校准以进行测量校正。• FIFO:存储最多 32 个压力或温度测量值。• 接口:I2C 和 SPI(均带有可选中断) • 封装尺寸:8 针 PG-VLGA-8-2,2.0 mm x 2.5 mm x 1.1 mm。• 符合绿色产品 (RoHS)
摘要 本文研究了航空重力数据对美国科罗拉多州山区重力大地水准面建模改进的贡献。首先,对航空重力数据进行处理、过滤和向下延拓。然后,准备三个重力异常网格;第一个网格仅来自地面重力数据,第二个网格仅来自向下延拓的航空重力数据,第三个网格来自组合向下延拓的航空和地面重力数据。使用最小二乘修正斯托克斯公式和加性校正 (LSMSA) 方法确定具有三个重力异常网格的重力大地水准面模型。在 GNSS/水准点上估计了计算的重力大地水准面模型的绝对和相对精度。结果显示,与仅根据地面重力数据计算的大地水准面模型相比,使用航空和地面重力数据进行大地水准面计算时,精度在标准偏差方面提高了 1.1 厘米或 20%。最后,对表面重力异常网格和大地水准面模型进行了光谱分析,这为了解航空重力数据贡献并改善功率谱的特定波长带提供了见解。
美国银行业在一个非常动态和竞争的环境中运营,在越来越苛刻的客户的压力下提供了广泛的服务。在金融机构的背景下,客户流失被定义为客户终止与银行关系的现象。该研究项目的核心宗旨是设计和开发人工智能的预测模型,这些模型可以帮助从银行的角度解决客户流失问题。用于此分析的银行客户流失预测的数据集包含有关领先金融机构的客户的全面数据。它包括广泛的客户记录,每个客户记录都用代表客户行为和人口统计学不同维度的功能描述。为这项研究选择了三种最具影响力的算法:逻辑回归,随机森林和XG-Boost。每个模型都有不同的优势,非常适合客户流失预测的内在复杂性。随机森林在模型之间的准确性方面是最好的,具有相对精度,这可能表明该算法最适合数据中的基本模式。在美国金融领域,AI驱动的流失预测模型的整合对银行具有深远的影响,从而提高了其运营效率和客户关系管理。首先,它可以以高度准确性的身份确定高风险的客户,从而帮助银行实施可重点的保留策略,从而可以显着降低流失率。