美国银行业在一个非常动态和竞争的环境中运营,在越来越苛刻的客户的压力下提供了广泛的服务。在金融机构的背景下,客户流失被定义为客户终止与银行关系的现象。该研究项目的核心宗旨是设计和开发人工智能的预测模型,这些模型可以帮助从银行的角度解决客户流失问题。用于此分析的银行客户流失预测的数据集包含有关领先金融机构的客户的全面数据。它包括广泛的客户记录,每个客户记录都用代表客户行为和人口统计学不同维度的功能描述。为这项研究选择了三种最具影响力的算法:逻辑回归,随机森林和XG-Boost。每个模型都有不同的优势,非常适合客户流失预测的内在复杂性。随机森林在模型之间的准确性方面是最好的,具有相对精度,这可能表明该算法最适合数据中的基本模式。在美国金融领域,AI驱动的流失预测模型的整合对银行具有深远的影响,从而提高了其运营效率和客户关系管理。首先,它可以以高度准确性的身份确定高风险的客户,从而帮助银行实施可重点的保留策略,从而可以显着降低流失率。
主要关键词