量子计算正在迅速发展,它对现代加密技术构成了前所未有的威胁。在未来二十年内,量子计算可能导致一场全球网络安全危机,被称为“Q 日”。届时,量子计算将能够破解支撑互联网和其他数字过程的加密方法。这种情况威胁到个人隐私、全球经济稳定和国家安全基础设施。量子威胁的实际时间表尚不确定,但开发和实施抗量子密码学迫在眉睫。本文通过关注量子体积、相干时间和相干增益等指标,研究了量子计算能力的现状和预计增长。本文还强调了 2025 年至 2030 年期间,指出在此期间量子计算可能会取得重大突破由于增强了量子比特缩放、纠错和算法效率。展望未来十年,即 2034 年,密码学的前景将发生显著变化。到那时,量子计算机很有可能实现约 10 7 个量子比特的量子体积,错误率低至 10 -3
摘要:单重态裂变 (SF) 是量子信息科学中一种很有前途的方法,因为它可以通过与温度无关的光激发产生自旋纠缠的五重态三重态对。然而,在室温下合理实现量子相干性仍然具有挑战性,这需要精确控制三重态对的方向和动力学。本文表明,通过在大环内平行且紧密靠近地排列两个并五苯发色团,可以在室温下实现五重态多激子的量子相干性。通过在醛修饰的并五苯衍生物之间建立动态共价席夫碱键,可以高产率地选择性合成大环平行二聚体-1 (MPD-1)。MPD-1 在聚苯乙烯薄膜中表现出快速亚皮秒 SF 并产生自旋极化的五重态多激子。此外,MPD-1五重态的相干时间T2即使在室温下也长达400 ns。这种大环平行二聚体策略为未来利用分子多层量子比特的量子应用开辟了新的可能性。
单独捕获的里德堡原子作为可扩展量子模拟和可编程量子计算机开发平台具有巨大潜力。具体而言,里德堡阻塞效应可用于通过编码物理量子比特的低位电子态来促进快速量子比特间相互作用和长相干时间。为了使现有的基于里德堡原子的平台更接近容错量子计算,我们在五个原子系统中展示了高保真状态和电路准备。我们特别展示了量子控制可用于可靠地生成完全连接的簇状态,并模拟基于 Laflamme 等人的“完美量子纠错码”的纠错编码电路 [Phys. Rev. Lett. 77, 198 (1996)]。我们的结果使这些想法及其实现可直接用于实验,并展示了对实验误差的良好噪声容忍度。通过这种方法,我们推动了量子控制在小型子系统中的应用,结合标准的基于门的量子电路,直接、高保真地实现少量子比特模块。
摘要 — 近期量子计算机的错误率很高,相干时间很短,因此,尽可能缩短电路的编译时间至关重要。通常考虑两种类型的编译问题:从固定输入状态准备给定状态的电路,称为“状态准备”;以及实现给定酉运算的电路,例如通过“酉合成”。在本文中,我们解决了一个更一般的问题:将一组 m 个状态转换为另一组 m 个状态,我们称之为“多状态准备”。状态准备和酉合成是特殊情况;对于状态准备,m=1,而对于酉合成,m 是整个希尔伯特空间的维度。我们以数字方式生成和优化多状态准备电路。在基于矩阵分解的自上而下方法也可行的情况下,我们的方法可以找到具有明显(最多 40%)更少的双量子比特门的电路。我们讨论了可能的应用,包括有效准备宏观叠加(“猫”)状态和合成量子信道。索引词——量子计算、状态准备、编译、合成
具有长寿命相干性的量子态对于量子计算、模拟和计量学至关重要。在单重态振转基态中制备的超冷分子的核自旋态是编码和存储量子信息的绝佳候选。然而,重要的是要了解这些量子比特的所有退相干源,然后消除它们,以达到尽可能长的相干时间。在这里,我们使用高分辨率拉姆齐光谱法全面表征了光学捕获的 RbCs 分子超冷气体中存储量子比特退相干的主要机制。在详细了解分子超精细结构的指导下,我们将磁场调整到一对超精细状态具有相同磁矩的位置。这些状态形成一个量子比特,它对磁场的变化不敏感。我们的实验揭示了状态之间微妙的微分张量光移,这是由旋转状态的弱混合引起的。我们演示了如何通过将线性偏振陷阱光和施加的磁场之间的角度设置为魔角反余弦(1 / √
最先进的固态量子处理器的主要局限性之一是由于表面上的吸附物,界面上的杂质和材料缺陷引起的噪声而引起的量子降压和放松。要使领域迈向全断层量子计算,需要更好地了解这些显微镜噪声源。在这里,我们使用超高的真空包装来研究真空负载,紫外线照射和离子辐照处理对放松和相干时间的影响,以及缓慢的参数频率的频率频率浮动,可调节的超导超导转移速度。所研究的处理不会显着影响弛豫率γ1和回声衰减率γe 2; SS处于最佳位置,除了减少γ1的NE离子轰击。相比之下,通过从紫外线和NH 3处理的芯片表面中去除磁吸附物,可以改善漏噪声参数。此外,我们证明了SF 6离子轰击可用于原位调节量子频率,而在固定后进行了轰炸,而不会在最佳位置影响量子放松和相干时间。
摘要 动态解耦技术是一种多功能工具,可用于设计具有定制特性的量子态。在捕获离子中,通过射频场修饰的嵌套连续动态解耦 (CDD) 层可以抵消主要的磁移和电移,从而提供电子态的极长相干时间。利用这种增强功能进行频率计量、量子模拟或量子计算,提出了将解耦与激光离子相互作用相结合以对捕获离子的电子和运动状态进行量子控制的挑战。最终,这将需要在修饰解耦状态的量子比特上运行量子门。我们在此提供捕获离子中嵌套 CDD 的紧凑表示,并将其应用于电子 S 和 D 状态以及光学四极跃迁。我们的处理提供了所有有效的跃迁频率和 Rabi 速率,以及这些跃迁的有效选择规则。在此基础上,我们讨论了结合 CDD 和 Mølmer-Sørensen 门的可能性。
鉴于人们对通量钅的兴趣日益浓厚,以及 D-Wave Quantum 在构建通量类量子比特量子技术方面的丰富经验,我们已着手开展一项研究计划,利用通量钅的独特性质,用于 D-Wave Quantum 的所有技术开发。主要动力是制造通量钅,作为“黄金标准”高相干通量类量子比特,可用于表征 D-Wave Quantum 的 QA 量子处理单元 (QPU) 电磁环境。但是,我们也在使用早期的通量钅测试电路来验证通量钅在未来 QA 和 GMQC 技术中的潜在用途。本报告总结了由 D-Wave Quantum 制造的单个通量钅电路获得的一些结果,并在我们的一个 QA QPU 低温系统中进行了测量。我们观察到,我们的通量相干时间与科学文献中报道的二维电路几何结构的最新水平相当。我们还观察到非常低的有效量子比特温度,这是迄今为止文献中报道的最佳温度之一。后一个观察结果证明了 D-Wave Quantum 的 QPU 环境的工程质量。
单个量子点的塞曼分裂自旋态可与其光学三子跃迁一起使用,在静止(自旋)和飞行(光子)量子位之间形成自旋 - 光子界面。除了自旋态本身的长相干时间之外,三子态的极限退相干机制也是至关重要的。在这里,我们在时间分辨共振荧光中研究了施加磁场(高达 B ¼ 10 T)下单个自组装量子点中的电子自旋和三子动力学。量子点仅与电子库弱耦合,隧穿速率约为 1 ms 1 。使用这种样本结构,除了电子的自旋翻转速率和三子跃迁的自旋翻转拉曼速率之外,我们还可以测量将俄歇电子散射到导带的俄歇复合过程。俄歇效应会破坏辐射三子跃迁,使量子点保持空置状态,直到电子从储存器隧穿到量子点中。俄歇复合事件与随后从储存器隧穿的电子相结合,可以翻转电子自旋,从而构成限制自旋寿命的另一种机制。
光子平台是量子技术的绝佳环境,因为弱的光子与环境耦合可以确保较长的相干时间。量子光子学的第二个关键因素是光子之间的相互作用,这可以通过交叉相位调制 (XPM) 形式的光学非线性提供。这种方法支撑了量子光学 1 – 7 和信息处理 8 中的许多拟议应用,但要发挥其潜力,需要强的单光子级非线性相移以及可扩展的非线性元件。在这项工作中,我们表明所需的非线性可以由嵌入量子阱的微柱中的激子极化子提供。它们将激子的强相互作用 9、10 与微米级发射器的可扩展性结合起来。11。使用衰减到单光子平均强度以下的激光束,我们观察到每个极化子的 XPM 高达 3±1 mrad。以我们的工作为第一步,我们为极化子晶格中的量子信息处理铺平了道路。XPM 的量子应用包括远距传物 1 、光子数检测 2 、计量学 4 、密码学 5 和量子信息处理 (QIP),其中它被提议作为电路 6 和测量 7 的途径