量子计算机已开始从纯学术研究稳步过渡到工业应用。此类系统对材料设计、药物研发、物流、金融、安全、计量等领域具有潜在影响。我们已经进入了一个新时代,尽管量子比特阵列规模很小(1000 个),但量子计算机在解决特定问题方面已经远远优于传统计算机。全球努力的方向是提高量子计算机的可扩展性,同时保持其准确性。执行量子计算的主要平台之一是离子阱系统。该系统拥有最佳的单量子比特和双量子比特门保真度和较大的相干时间,因此使其成为多家国际行业参与者的物理量子比特实现选择,例如 Alpine quantum technologies (AQT)、ionq、Quantinuum(霍尼韦尔分拆公司)、量子工厂、oxford ionics、eleqtron。霍尼韦尔和 AQT 演示了一些东西。
我们描述了一种灵活的微波合成系统,该系统由一个超低相位噪声低温蓝宝石振荡器 (CSO) 设计,可用作镱离子 (Yb+) 量子比特的主时钟。我们报告称,使用该合成系统,量子比特相干时间从 0.9 秒提高到 8.7 秒,提高了 10 倍,单量子比特量子门的误差为 1.6e-6。使用滤波函数方法 [1],我们发现证据表明,0.9 秒的宝贵相干性受到精密级商用现成微波合成器 [1] 的相位噪声的限制。此外,我们还利用微波合成系统的灵活性来演示贝叶斯学习算法,该算法可以自主设计信息优化的控制脉冲来识别和校准定量动力学模型,以表征囚禁离子系统。我们通过实验证明,新算法在少量样本的情况下超过了传统校准方法的精度 [2]。
摘要:保护物质中的量子相干性不受环境影响对于在量子技术中使用分子和材料以及开发增强光谱至关重要。本文展示了如何在光学腔的背景下用量子光修饰分子发色团,以产生具有可调相干时间尺度的量子叠加态,这些相干时间尺度比裸分子的相干时间尺度更长,即使在室温和浸入溶剂中的分子中也是如此。为此,我们开发了分子极化态的退相干率理论,并证明涉及这种混合光物质态的量子叠加可以比裸分子存活时间长几个数量级,同时保持光学可控性。此外,通过研究有损腔存在下的这些可调相干增强,我们证明它们可以使用当今的光学腔来实现。该分析提供了一种可行的策略来设计和增加分子中的量子相干寿命。
由于光子损失而无法立即将摘要现有的经典光学网络基础架构用于量子网络应用。启用量子网络的第一步是将量子中继器集成到光网络中。但是,量子硬件中固有的费用和内在噪声强调了对有效的部署策略的需求,以优化量子折扣和记忆的分配。在本文中,我们提出了一个用于网络计划的综合框架,旨在有效地在现有基础架构上分配量子中继器,目的是在纠缠分布网络中最大化量子网络实用程序。我们将我们的框架应用于几个案例,包括哑铃网络拓扑的初步插图以及Surfnet和Esnet的现实情况。我们探讨了量子中继器中量子存储器多路复用的影响,以及记忆相干时间对量子网络实用程序的影响。我们进一步研究了不同公平假设对网络计划的影响,从而发现了它们对实时网络性能的影响。
摘要:将量子信息确定性地加载到量子节点上是迈向量子网络的重要一步。本文,我们证明具有最佳时间波形的相干态微波光子可以有效地加载到半无限一维 (1D) 传输线波导中的单个超导人造原子上。使用具有指数上升波形的弱相干态(脉冲中包含的光子数 (N) ≪ 1),其时间常数与人造原子的退相干时间相匹配,我们证明从 1D 半自由空间到人造原子的加载效率为 94.2% ± 0.7%。高加载效率归因于时间反转对称性:入射波和时间反转的发射波之间的重叠高达 97.1% ± 0.4%。我们的研究结果为实现基于波导量子电动力学的量子网络开辟了有希望的应用。关键词:量子网络,光子加载,波导量子电动力学,超导人工原子Q
量子误差校正(QEC)是必须实现可扩展的量子计算体系结构1超出当前中间尺度噪声设备的功能的强制性。2 - 6的确,由于量子计算机与环境噪声的不可避免的相互作用,叠加状态本质上是脆弱的且容易出错的。QEC算法基于将单个逻辑量子置于多个物理对象中的编码,从而使该平台的实现和控制非常苛刻。在这方面,分子纳米磁铁(MNM)是一种特别有吸引力的材料类。7 - 10每个分子可以容纳几个可区分的量子,并具有化学定制的磁相互作用11-16,并且可以显示出非常长的相干时间。17 - 27此外,它们可以通过射频26,28,29和电子顺磁共振(EPR)脉冲来表征和操纵,这些脉冲(EPR)脉冲解决了不同的过渡,即使在表面上的单个原子上也已经探究了30个。31这里,我们建议利用这些特殊性以嵌入受保护的逻辑单元
量子误差校正(QEC)对于实现可扩展的量子计算体系结构1的实现是必须的,超出了当前中等规模噪声设备的功能。2 - 6的确,由于量子计算机与环境噪声的不可避免的相互作用,叠加状态本质上是脆弱的且容易出错的。QEC算法基于将单个逻辑量子置于多个物理对象中的编码,从而使该平台的实现和控制非常苛刻。在这方面,分子纳米磁铁(MNM)是一种特别有吸引力的材料类。7 - 10每个分子可以容纳几个可区分的量子,并具有化学定制的磁相互作用11-16,并且可以显示出非常长的相干时间。17 - 27此外,它们可以通过射频26,28,29和电子顺磁共振(EPR)脉冲来表征和操纵,这些脉冲(EPR)脉冲解决了不同的过渡,即使在表面上的单个原子上也已经探究了30个。31这里,我们建议利用这些特殊性以嵌入受保护的逻辑单元
摘要 现代量子设备在通信、计量或显微镜领域的性能依赖于量子-经典相互作用,这种相互作用通常用退相干理论来描述。尽管长相干时间在量子电子学中具有很高的相关性,但由库仑力介导的退相干机制尚不清楚,而且存在几种相互竞争的理论模型。在这里,我们介绍了一项实验研究,研究了双棱镜电子干涉仪中靠近半导体和金属表面的叠加态自由电子的库仑诱导退相干。退相干是通过不同光束路径分离、表面距离和电导率下的对比度损失来确定的。为了阐明当前的文献讨论,将四种理论模型与我们的数据进行了比较。我们可以排除其中三种,并与基于宏观量子电动力学的理论很好地一致。结果将有助于在设计新型量子仪器时确定和最小化特定的退相干通道。
摘要我们最近的工作(Ayral等人。在IEEE计算机协会的会议记录中,ISVLSI,第138–140页,2020年。 Qubits和较浅的深度。这适应量子处理器的量子数量有限和短相干时间。本文研究了QDC过程的成功概率,研究了不同噪声源的影响 - 阅读错误,门错误和反应性。我们在ATOS量子学习机上执行详细的噪声建模,使我们能够理解权衡折衷方案,并提出有关哪些硬件噪声源的建议优先优化。我们还详细描述了我们用于在IBM的约翰内斯堡处理器上重现实验运行的噪声模型。本文还包括QDC程序中使用的方程式的详细推导,以从其片段的输出分布计算原始量子电路的输出分布。最后,我们通过张量 - 网络考虑分析了QDC方法的QDC方法的计算复杂性,并使用张量 - 网络模拟方法详细介绍了QDC方法的关系。
量子计算机有望在解决一系列计算问题时比传统计算机实现显著的加速。线性 Paul 阱中保持的离子链是构建此类量子计算机的有前途的平台,因为它们具有较长的相干时间和较高的控制质量。本文,我们报告了使用射频 (rf) 阱中的 88 Sr + 离子构建小型五量子比特通用量子计算机的情况。所有基本操作(包括初始化、量子逻辑操作和读出)均以高保真度执行。使用窄线宽激光实现的选择性双量子比特和单量子比特门组成通用门组,允许在量子寄存器上实现任何幺正。我们回顾了主要的实验工具,并详细描述了计算机的独特方面:使用强大的纠缠门和通过电子倍增 CCD 相机采集开发量子相干反馈系统。后者对于在未来的实验中执行量子纠错协议是必要的。