只有一克人的便便,有超过1000亿个细菌和最多1万亿个噬菌体!这意味着古代人类便便样品非常适合查找噬菌体DNA。我们选择了30个古老的便便样品。我们选择的最古老的样本来自5300年的冷冻木乃伊,名为ÖtziiCeman。我们还使用了来自世界各地的古代人类的大便,包括美国,墨西哥和奥地利(图1)。猜猜是什么?我们不必自己收集任何样本,因为它们以前是由不同小组研究的。我们只是回收了他们的数据!
根据适用的 SFS-EN IEC 61851-21-2:2021:en、通用 IEC、CISPR EMC 标准对设备进行了基本的预合规 EMC 测试,以评估辐射和传导发射、静电放电 (ESD) 抗扰度和 EMC 扫描。由于时间限制,尽管现场有所需的设备,但未进行其余的一般发射和抗扰度测试,例如电快速瞬变 (EFT) 和电压浪涌。虽然测试设置与标准要求不完全一致,但在产品开发的初始阶段,它仍然足以评估电动汽车充电站的发射和抗扰度。
• 现代 OHL 技术 • 电磁瞬变 • 输电系统中的地下电缆 • 电能质量和谐波稳定性 • 电力系统稳定性和电压控制 • 网络规划方法 • 电力系统保护 • HV/MVDC 网络和转换器 • 时间和频率域中的仿真模型 • 高压工程 • 绝缘协调研究 • 智能电网和分布式发电 • LV/MV 控制的分层控制结构 • 热力和运输部门的电力使用 • 需求响应方法 • 与电力市场相关的控制
在水泥工业中,阿根廷学者Daniel L.等率先对水泥样品中的元素进行了分析,分析结果表明,PGNAA技术可以实现样品中Fe、Ca、Si、Cl等元素的测量[70]。1999年,R.Kheli等人采用Am-Be中子源和高纯锗探测器测量了水泥样品中硅钙比[71]。Saleh H.等人研制了检测钢筋混凝土中氯含量的装置[30]。2001年,CS Lim等人开发了传送带上的PGNAA水泥在线检测设备。该设备利用Am-Be中子源发射的中子与样品中元素的非弹性散射与俘获反应,实现水泥原料元素的分析,采用双源探测器减少由于皮带上原料组分空间分布不均匀带来的测量误差[72]。2009年至2014年,A.A.Naqvi等人先后对水泥粉尘及水泥中氯元素进行了研究,利用PGNAA技术分析了水泥粉尘和混凝土,获得了氯元素的检出限[73][74][75]。
弥漫性神经胶质瘤,尤其是胶质母细胞瘤,是无法治愈的脑肿瘤1。它们的特征是通过Ca 2+瞬变2-6进行通信的相互联系的脑肿瘤细胞网络。但是,网络的体系结构和通信策略以及这些影响肿瘤生物学如何仍然未知。在这里,我们描述了胶质母细胞瘤细胞网络如何包括高度活性胶质母细胞瘤细胞的少量塑料种群,这些细胞显示有节奏的Ca 2+振荡并特别连接到其他振荡。它们的自主周期性CA 2+瞬态先于其他网络连接细胞的Ca 2+瞬变,从而激活了频率依赖性的MAPK和NF-κB途径。数学网络分析表明,胶质母细胞瘤网络拓扑遵循无尺度和小世界的特性,周期性肿瘤细胞经常位于网络中心中。这种网络设计使阻力能够抵抗随机损坏,但容易丢失其关键枢纽。通过定期肿瘤细胞的选择性物理消融或通过遗传或药理干扰钾通道KCA3.1(也称为IK1,SK4或KCNN4)来靶向自主节奏活性。这导致整个网络中肿瘤细胞活力的显着降低,降低了小鼠的肿瘤生长并扩展了动物生存。胶质母细胞瘤网络对周期性Ca 2+活性的依赖性产生了一种脆弱性7,该脆弱性7可以用于开发新型疗法,例如使用KCA3.1抑制药物。
当人们想要进行想象 (IMI) 或真实运动 (RMI) 时,脑电图 (EEG) 中会引发低频准备电位 (RP)。虽然大多数脑机接口 (BCI) 应用中面临的挑战是从给定的 EEG 试验中对不同肢体的 RP 进行分类,但本研究的目的是从整个单通道 EEG 信号中快速自动检测 RP。所提出的算法有两个阈值块,第一个阈值块基于非线性 Teager-Kaiser 能量算子 (TEO),第二个阈值块以 RP 波形的形态特性为约束。性能受到瞬变和伪影导致的突然能量变化的强烈影响。作为主要贡献,所提出的非线性凸优化算法通过提供快速阈值机制,实现将瞬变与低频分量分离。将所提出的方法应用于 Physionet RMI 数据集、BCI 竞赛 IV-1 IMI 数据集和我们自己的健康受试者左手运动数据集,可获得 76.5 ± 8.27%、83.85 ± 11.4% 和 81.1 ± 5.23% 的真阳性率 (TPR),2.4 ± 1.07、1.4 ± 0.7 和 1.6 ± 0.69 的 FPs/min 数量,以及 85.4 ± 3.83%、90 ± 3.56% 和 91.2 ± 2.04% 的准确率。我们的自动 RP 检测器的运动开始检测延迟为 -384.9 ± 296.5 毫秒。总之,所提出的方法优于使用低至单通道 EEG 的最先进的技术,使其适用于中风瘫痪患者的实时神经康复。
Ÿ Pankaj Jain,主任(雪城大学博士):天体物理学和宇宙学、射电天文学、宇宙射线、X 射线天文学Ÿ Ishan Sharma(康奈尔大学博士):行星科学、粒状小行星;力学、应用数学Ÿ Amitesh Omar(班加罗尔 RRI;JNU 博士):星系天体物理学、仪器、光学和射电天文学Ÿ Sharvari Nadkarni-Ghosh(康奈尔大学博士):理论宇宙学、行星科学、非线性动力学Ÿ Kunal P. Mooley(加州理工学院、国家射电天文台博士):天体物理瞬变、喷流、致密物体、银河系中心、宇宙中的生命。 Ÿ Prashant Pathak(博士,综合研讨大学):系外行星的特征:直接成像、透射光谱。自适应光学和波前控制技术。地面和太空光学及红外仪器 Ÿ Kartick C. Sarkar(博士,印度科学研究所和拉曼研究所):星系的形成和演化、星际介质、天体流体动力学、银河反馈、辐射传输 Ÿ Deepak Dhingra(博士,布朗大学):行星遥感和地质学 Ÿ JS Yadav(博士,库鲁克谢特拉大学):X 射线天文学、空间探测器和仪器、宇宙射线 Ÿ Avinash Deshpande(博士,印度理工学院孟买分校/RRI):射电天文学、脉冲星、射电瞬变、星际介质、仪器和信号处理