通讯作者* 博士研究员,威斯康星大学密尔沃基分校生物医学工程系,电子邮箱:bozorgp2@uwm.edu 简介 经典分子动力学 (MD) 依靠原子间势(力场)严格模拟固体和流体的热力学、机械和化学特性。该势根据原子位置和其他属性定义系统的能量。早期应用包括研究固体中的辐射效应和简单流体的动力学,凸显了该方法的多功能性 [1-3]。自诞生以来,分子动力学已广泛应用于物理、化学、生物、材料科学和相关领域。在水净化等纳米技术领域 [4],分子动力学还可以在原子水平上理解纳米粒子的行为方面发挥关键作用,有助于深入了解纳米粒子的结构稳定性、表面属性以及与周围分子的相互作用。它将系统建模为粒子(通常是原子)的集合,并通过在多个时间步长上对牛顿方程进行数值积分来计算它们的时间演化。原子上的力由定义势函数的解析方程的导数决定。这种方法计算效率高,特别是对于分子液体和固态金属,可以准确捕捉电子介导的原子相互作用。标准工作站上的 MD 代码可以高效模拟具有 10,000 到 100 万个原子的系统,覆盖皮秒到微秒内重要物理和化学现象的相关长度和时间尺度 [5-8]。MD 模拟的流行可以归因于它们与摩尔定律和广泛并行性推动的显著计算进步的兼容性。在过去的几十年里,传统 CPU 和最近的 GPU 都经历了大幅提速。例如,1988 年,8 处理器的 Cray YMP 实现了 2 千兆次浮点运算的 Linpack 速度,而在 2012 年,单个具有 16 个内核的 IBM Blue Gene/Q CPU 达到了 175 千兆次浮点运算。最大的 BG/Q 机器 Sequoia 拥有近 100,000 个 CPU。预计在未来一两年内,基于 GPU 的超级计算机将达到百亿亿次浮点运算 (10−18) 的速度,这意味着最强大的超级计算机在短短 30 年内速度将提高 5 亿倍。这一趋势还转化为台式机和小型集群的速度提升,可供更广泛的科学计算社区使用 [9, 10]。MD 的计算效率源于其每个时间步的成本线性扩展为 O(N),对于具有短程相互作用的模型,这是由于在指定的截止距离内相邻原子的数量有限。即使对于长程库仑相互作用,MD 也表现出有效的扩展性,对于基于 FFT 的方法(如粒子网格 Ewald),其成本为 O (N log N)
模块化标准化武器和瞄准架 .................................................. 00 夜视设备-下一代系统 .............................................................. 00 Prophet 增强信号处理 .............................................................................. 00 在现代战场上保护装甲旅战斗队 ............................................................................................. 00 快速部署的短程防空系统 ............................................................................. 00 弹性波形和与联盟伙伴的互操作性 ............................................................. 00 系留无人机系统能力 ............................................................................. 00 第三代前视红外瞄准器 ............................................................................. 00 通过团队感知套件实现可信军事通信 ............................................................. 00 海军飞机采购 ............................................................................................. 00 特别感兴趣的项目 ............................................................................................. 00 海军航空母舰后勤支援 ............................................................................. 00 超级大黄蜂电力要求 ............................................................................. 00 V–22 投资报告 ............................................................................................. 00 V–22 发动机短舱改进 ............................................................................. 00 海军武器采购 ................................................................................................ 00 特别感兴趣的项目 .............................................................................................. 00 先进机载传感器 .............................................................................................. 00 远程火力 .............................................................................................................. 00 被动远程瞄准 .............................................................................................. 00 声纳浮标库存 ...................................................................................................... 00 海军造船和改装 ............................................................................................. 00 特别感兴趣的项目 ............................................................................................. 00 持续决议和政府关门对国防部造船工作的影响 ............................................................................. 00 大型水面战斗舰 ............................................................................................. 00 PAC-3 宙斯盾集成 ............................................................................................. 00 支持福特级航空母舰的稳定采购计划 .............................................................................................00 海军其他采购 ................................................................................................ 00 特别感兴趣的项目 .............................................................................................. 00 未来 X 波段雷达 .............................................................................................. 00 综合监视系统——联合跨域交换(JCDX) ...................................................................................... 00 空军飞机采购 ................................................................................................ 00 特别感兴趣的项目 ................................................................................................ 00 空军 A–10 撤资时间表 ............................................................................. 00 空军 MH–139 灰狼采购 ............................................................................. 00 B–52 机载电子攻击 ............................................................................. 00 阿拉斯加空中主权警报任务评估 ............................................................................. 00 航空软件修补时间表 ............................................................................. 00 美国印度-太平洋司令部轰炸机舰队作战 ...................................... 00 CV-22 鱼鹰部队结构评估 .............................................. 00 用于协同战斗机的高效中型推进系统 00 F-15EX 保形油箱 ........................................................ 00 F-15EX 多年采购战略实施 ........................................................ 00 F-35 第五代武器开发和部署 ........................................................ 00 采用商业人工智能工具加强飞行管理和空中作战的实施计划。 00 KC–135 先进自动化路线图 .............................................................. 00 利用先进飞机自动化进行货物运送 .............................................. 00 MH–139 正式训练单位 .............................................................................. 00 机动飞机连通性 ............................................................................................ 00 极地战术空运要求 ............................................................................................ 00 关于 MQ–9 收割者情报、监视和侦察需求和能力的报告 ............................................................................. 00 空军导弹采购 ............................................................................................. 00 特别感兴趣的项目 ............................................................................................. 00 快速适应型经济型巡航导弹 .............................................................................00 其他采购,空军................................................................................................ 00 特别感兴趣的项目.............................................................................................. 00
量子退火 (QA) 的出现是未来量子计算发展的重要一步,也将极大地促进统计物理和材料科学建模的发展。到目前为止,QA 在这些领域的应用仍然很少,其中包括确定具有长程弹性相互作用的平衡微结构 1 、横向场 Ising 模型中的相变 2 、通过 Shastry-Sutherland 模型研究受挫磁系统的能态 3 以及设计超材料 4 。另一个例子是结合使用量子退火器和玻尔兹曼机来采样自旋玻璃并预测 MoS 2 层的分子动力学数据 5 。更一般地说,由 D-Wave 公司实施的 QA 可以有效地找到离散优化问题的基态配置,在学术界和工业界都有许多应用 6 – 10 。 QA 的概念是在低温下以明确定义的基态初始化系统的哈密顿量,然后平滑地转换能量景观,使其代表所需的优化问题。如果仔细执行这种绝热变换,系统最终会处于目标哈密顿量的基态,因此可以找到优化问题的全局最小值。然而,在实践中,准备、转换和读出过程并不是完全绝热、无噪音和与环境分离的,因此有时会发现能量更高的状态,尤其是与简并态 11 或太小的能隙结合时。因此,对于典型的 QA 应用,需要多次重复和读出来确定真实基态。在本文中,我们证明了该技术的这一缺陷实际上可以转化为优点,因为它可以非常有效地确定有限温度的热力学性质。从材料科学的角度来看,T = 0K 时的基态配置通常只对许多实际应用具有有限的意义。例如,对于铁磁体,所有自旋都排列在基态,而对于有限温度,热涨落会导致有限的关联长度、相变和温度相关的磁化。对此类属性进行统计建模的传统方法是使用蒙特卡罗 (MC) 采样技术,因为由于相空间的巨大规模,通常无法明确计算配分函数。此类计算最突出的方法可能是使用 Metropolis 转移概率生成离散马尔可夫链,这会生成一系列遵循玻尔兹曼统计的配置,因此可以通过更容易地计算这些马尔可夫链上的时间平均值来表达集合平均值 12、13。在实践中,根据玻尔兹曼分布 p ∼ exp ( − β ∆ E ) (其中 β = 1 / k BT ),从一个状态到另一个状态的转变正在发生,其概率取决于两个配置之间的能量差 ∆ E 。通常,这种方法在低温下效率低下,因为新配置的拒绝率非常高,因此在局部最小值中捕获的相空间采样不足,导致对所需热力学性质的预测有噪声。另一种重要的采样策略是由 Wang 和 Landau 开发的,他们使用非马尔可夫算法通过平坦直方图技术提取状态密度,从中可以计算出所有所需的热力学性质 14 。除了这些主要技术之外,Dall 等人还开发了一种在低温下快速采样玻尔兹曼分布的算法。然而,这种算法最适合具有短程相互作用的系统 15 。另一种公平采样基态和
量子混沌是十分重要的。它是孤立多体量子系统热化机制和本征态热化假设 (ETH) 有效性的基础[1-3],它解释了驱动系统的加热[4,5],它是多体局部化的主要障碍[6-9],它抑制了多体量子系统的长时间模拟[10],它可能导致量子信息的快速扰乱[11],并且它是可以观察到量子疤痕现象的区域[12-14]。对于具有适当半经典极限的系统,量子混沌是指在量子域中发现的特定属性,此时相应的经典系统在混合、对初始条件的敏感性和正的 Lyapunov 指数意义上是混沌的。对于自由度较少的系统(如台球和被踢转子),这种对应关系已经很明确,然而对于我们感兴趣的具有许多相互作用粒子的系统,由于半经典分析的挑战,这种对应关系仍然缺乏 [15]。因此,通常的方法是,如果一个给定系统显示出与全随机矩阵集合中发现的特征相似的相关特征值和特征态分量,则将其表示为混沌 [16-19]。最近对多体系统中量子混沌的研究大多针对有限密度的粒子进行,但出现了两个问题:量子混沌也能在零密度极限下发生吗?如果是这样,需要多少个相互作用的粒子才能使量子系统进入强混沌状态?这些问题对于冷原子和离子阱实验尤其重要,因为在这些实验中可以控制系统的粒子数量和大小。在参考文献中。 [20],通过逐步增加冷原子的数量,实验表明只需 4 个粒子即可形成费米海。仅使用四个相互作用的粒子也得到了量子混沌 [18] 和具有费米-狄拉克分布 [21-25] 的热化。最近,在含有 5 个粒子的系统中研究了热化 [26],并在仅含有 4 个粒子的系统中再次验证了量子混沌 [27-30],甚至可能在只有 3 个相互作用粒子的系统中 [31]。然而,目前尚不完全清楚其他混沌指标是否表现出类似的行为,以及是否可以通过引入长程相互作用来改变所获得的 4 个相互作用粒子的阈值。这些都是我们在本文中考虑的问题。我们重点研究自旋 1/2 链,其激发数 N 较少,幂律相互作用随自旋之间的距离衰减。这些系统类似于硬核玻色子或无自旋费米子的系统,因此这些情况下的粒子数对应于我们模型中的自旋激发 1 。我们发现,在具有短程耦合的系统中,当 N ≳ 4 时,无论系统规模有多大,都会出现强混沌。虽然大型链会改善统计数据,但不会改变我们的结果。我们表明,长程相互作用可促进向混沌的转变,并将阈值降低到仅 3 个激发,使得只有 3 个相互作用粒子的系统表现出与稠密极限下的大型相互作用系统类似的混沌特性。这对于离子阱实验尤其有意义,因为其中可以控制相互作用的范围 [ 32 , 33 ] ,以及探索长程相互作用系统的 Lieb-Robinson 界限的推广的研究 [ 32 – 35 ] 。