*通讯作者电子邮件:taufiqamu@gmail.com doi:10.7897/2277-4572.04554收到:17/08/15修订:20/09/15在:05/10/15接受:05/10/15感染和感染的抽象概念由各种古老的现代Scholars Backers Back bebals Back back the bys Back back and Back back back and Back and and Back back and and and and and and and and and and and and and and and and and and and and and and and and and and scholars。罗伯特·科赫(Robert Koch,1843-1910)被认为是启发感染概念及其与微生物的关联的先驱。尽管在古代文献中没有描述任何形式的微生物,但是从对Tibbi文献进行仔细的调查来看,很明显,阿拉伯医师对感染过程非常精心,他们称其为Ta'diyah(感染)和Ufunah(Putfactaction)。Al-Razi(Rhazes)采用的独特方法选择了最合适,最健康的医院建筑地点,也证明了他意识到有微生物的存在。Avicenna在他著名的著作《 Qanoon》中提到微生物是Ajsam Khabisah。评论仅重点介绍了unani的描述,这些描述在古典unai文献中提到。关键词:尿路感染,tadiya majr-e-baul,unani医学。引言尿路感染在细菌被认为是疾病的病因和泌尿外科成为既定的医学专业之前就困扰着人类。尿路感染旁边是呼吸道感染,这是医生遇到的问题。已经计算出,全球每年至少有1.5亿例有症状的尿路感染。2,5,61 IT占对医师,办公室的访问超过700万,每年在美国需要或复杂一百万个住院(Patton等,1991 Hooton and Stamm 1977),2,3,4是一个问题,这是一个问题,会影响所有年龄段的男孩,而在新生儿期间在男孩中更为常见,但在infancy和此期间变得更加普遍。
硅雪崩光二极管(APD)被广泛用作光子探测器,但是它们也可用于检测具有能量𝐸𝐸100keV的电子。尤其是,近年来对APD的使用来检测中等能量范围(10-100 KEV)的电子,特别是对于空间任务中的应用[1-3],APD耐用性与对磁场对磁场的敏感性相结合,具有吸引人的特征。虽然已经进行了一些研究使用APD来检测低能电荷颗粒[4],但使用APD来检测低(<1 keV)的能量电子是一个较少研究的领域,这是这项工作的主题。本文介绍的结果是在新型UV光检测器(Nanouv)开发的背景下产生的,并具有由垂直分配的碳纳米管制成的光(5-8]。垂直分配的碳纳米管可以使用化学蒸气沉积技术[9]生长至几百μm的长度,结果是获得高度各向异性的材料,并获得了管道方向的理想情况下,具有理想的消失密度[10,11]。由这种材料制成的光电行为可以显着降低照相电子重新吸收的可能性,这是现代紫外线探测器的不良效率的主要原因,因为光电子将直接散发到真空中,并且能够使纳米纤维ex nanotubes exul is the Mommante is pare the tube tube tube ubsum tube ubsum tub tubsum tubsum tubsum tub tub。然后通过施加的电势δ𝑉10kV加速电子,然后由位于真空管另一端的硅APD检测到长达几厘米。在图中可以看到Nanouv检测器概念的示意图1。
摘要:二维(2D)半导体最近由于其独特的光学和电子特性而引起了光传递的极大兴趣。然而,对于单层光晶体管,可检测到的光谱范围和光吸收效率通常非常有限。在这里,我们演示了基于零差(0D)硅量子点(SIQDS)和二硫化钼(MOS 2)形成的范德华异质结构(VDWH)(VDWH)(VDWH)(VDWH),尤其是在Ultraviolet(UV)的光谱范围内,该光谱(MOS 2)表现出很高的检测和响应率。与单独基于单层MOS 2的光晶体管相比,SIQD/MONOLAYER MOS 2 VDWH光晶体管的探测率提高了100倍(从1.0×10 12到1.0×10 12到1.0×10 14 cm×Hz 1/2/w),响应率提高了89倍,响应率提高了66.7秒66.7至66.7 s/f。对于SIQD/几层MOS 2 VDWH,还观察到增强的检测和响应性。分析和对照实验表明,跨SIQD/MOS 2 VDWH的电荷转移导致光子效应和光量。高性能SIQD/MOS 2 VDWH光晶体管对超敏化光检测,基于紫外线的光学通信,神经形态视觉传感和发射速度计算应用具有巨大的希望。关键字:0d/2d van der waals异质结构,Si Quantum Dot,MOS 2,光晶体管,高检测性,高响应率■简介
背景和目的:避免海马 - 整个脑放射疗法(HA-WBRT)可能是一个耗时的过程,与常规的全脑技术相比,因此有可能限制广泛利用。因此,我们通过利用计算机断层扫描(CT)基于计算机的商业自适应放射疗法(ART)平台和工作流程来创建和交付不含患者特定于患者的无模拟HA-WBRT,通过剂量 - 体积指标和时间来评估了In In In In In In In In In inico临床可行性。材料和方法:这项研究包括了十名先前接受过具有锥束计算机断层扫描(CBCT)成像的中枢神经系统癌症治疗的患者。CBCT是模拟第一部分板载成像的自适应图像。在MRI上定义的初始轮廓与CBCT匹配。在线艺术是在第一部分制定治疗计划的。将这些无模拟计划的剂量 - 体积指标与每个患者CT仿真数据集中的标准工作流程HA-WBRT计划进行了比较。记录了自适应计划会话的定时数据。结果:对于所有十名患者,无模拟的HA-WBRT计划通过在线艺术工作流程成功地制定了所有限制。在自适应计划中,海马中位数100%为7.8 Gy(6.6 - 8.8 Gy),而标准工作流计划中的8.1 Gy(7.7 - 8.4 Gy)。由于海马约束(6/10自适应分数)和亚最佳目标覆盖范围(6/10自适应片段),所有计划都需要在第一部分进行自适应。自适应课程的中间时间为45.2分钟(34.0 - 53.8分钟)。结论:通过计划质量指标和时间安排在临床上可行的无模拟Ha-wbrt在临床上是可行的。
太阳能太阳能电池板也称为模块,它包含由硅制成的光伏电池,可将入射的阳光转化为电能。(“光伏”基本上是从光中产生的电能——photo = 光,voltaic = 电。)太阳能光伏电池由放置在薄玻璃片下的正极和负极硅膜制成。当阳光的光子照射到硅电池上时,电子会从薄膜中弹出。带负电的电子被吸引到硅电池的一侧,这会产生可以收集和引导的电压。太阳能光伏阵列是通过连接不同的太阳能电池板来收集电流而形成的。熔断阵列组合器是一个电气箱,其中终止了多串太阳能光伏阵列电缆;这取决于安装的大小
即插即用:硅光子模块将电子数据转换为光子,然后再转换回来。硅电路帮助光调制器将电子数据编码为几种颜色的光脉冲。光通过光纤传输到另一个模块,光电探测器将光重新转换为电子比特。电子数据再次由硅电路处理并发送到适当的服务器。
在过去五年中,中国人民解放军 (PLA) 在采用人工智能进行战斗和支援方面取得了重大进展。中国领导人普遍预计人工智能将开启军事“智能化”,其特点是无处不在的传感器网络、更频繁的机器对机器交战和更快的作战节奏。1 但解放军在人工智能和相关技术方面的进步很大程度上取决于能否继续获得一类特殊的半导体——人工智能芯片——这些芯片用于训练先进的机器学习系统。通过分析解放军部队和国有国防企业在 2020 年授予的 24 份公共合同,本政策摘要对中国军方如何获得这些设备进行了有限但详细的分析。
晶体管诞生 75 周年(从“跨阻放大器”缩写为“跨阻器”再缩写为“晶体管”)。时光飞逝。这是一个非凡的量子物理学小片段。2022 年,晶体管将像病毒一样大小,速度几乎与光速一样快,而且重要的是,它们巧妙地拥有放大这一独特黄金属性,可使微小的电压和电流变得更大。到 2022 年,地球上将有超过 10 24 个晶体管,这得益于摩尔定律所体现的令人瞠目结舌的指数增长模式。晶体管在现代生活中无处不在,无论技术提供者还是消费者是否看到它们。当然,“晶体管”一词应该添加到地球上每个人的词汇表中。同样,从智能手机到汽车、飞机、互联网、GPS,所有现代技术,如果从地球上消失,无一例外都会立即停止运行。事实上,就其对人类文明轨迹的影响而言,人们可以公平地说,晶体管的发明是人类历史上最重要的发现。这话很大胆,但有理有据 [1]。1947 年底,巴丁和布拉顿在贝尔实验室使用点接触装置首次观察到了晶体管的作用。这次固态放大器的演示在历史记录中也是独一无二的,因为我们可以精确地定位它——1947 年 12 月 23 日下午 5 点左右。正是在那一刻,世界发生了不可逆转的变化。新泽西州默里山正下着雪。肖克利不甘示弱,到 1948 年 2 月,“晶体管三人组”中的第三位成员肖克利开发出了晶体管。
