[25] Shi K W,Yow K Y,LoC。单束和多光束激光槽过程参数开发和40 nm节点的模具特性 - k/ulk Wafer [C]∥2014IEEE 16th 16th Electronics包装技术会议(EPTC),2014年12月3日至5日,2014年12月3日,新加坡。纽约:IEEE出版社,2015:752-759。
对可持续能源开发的需求显着增加了对可再生资源的兴趣。太阳能是一种突出的可再生能源,可提供“无限”的无排放能量。在许多半导体材料中,硅具有将近70年的发育历史,用于光伏目的。基于Si-Wafer的PV技术约占2020年总产量的95%(参考文献1)由于几个原因:硅是地壳中第二大元素;硅的带隙在最佳区域内(1.1 - 1.4 eV),用于有效的太阳能转换;它是稳定且无毒的,硅半导体技术已经建立得很好。当前的晶硅(C-SI)太阳能电池效率记录为26.7%。2但是,最大可实现的功率转换效率(PCE)限制为29.43%(参考3)通过硅的间接带隙在1.12 eV和非放射性螺旋螺旋体重组 - c-SI光伏电池的主要固有损耗机制。C-SI太阳能电池开发的另一个瓶颈是材料成本,约占太阳能电池板成本的50%。4,由于硅的间接带隙,使用单次通量吸收获得的光电流很低,除非厚度超过许多微米。因此,
在光催化应用方面,二维材料最近引起了人们的广泛关注。19,20此外,二维结构具有较大的表面积与体积比,可以创建额外的光催化反应位点,并且电荷载流子复合率低,导致其迁移到表面。21,22硅烯是一种二维六方晶格的单层硅结构,于2007年在理论上预测,并于2010年合成,23它拥有石墨烯的大部分优良电子特性。氢和硅烯的共价改性,称为硅烷(SiH),可以在布里渊区产生相当大的带隙,类似于石墨烯的带隙。24,25氢化消除了硅烯的导电性并产生了更稳定的结构,从而在可见光区域产生了较小的带隙,可用于光催化。多项研究表明,SiH具有合适的间接带隙和稳定的结构。 26 全氢化硅烯是一种良好的异质结复合材料,也已在实验和理论上进行了研究。27,28 由于高反应性的 Si-H 键可直接用作化学过程中的还原剂或反应物,因此它们特别受关注。29
摘要 - 基于建立的基于硅的制造基础设施,传统上为电子产品构建的基于硅的制造基础设施,基于对低成本PIC方法的需求。除了其自然丰度外,硅具有理想的特性,例如光学损失(在某些临界波长下),而较小的外形则可以使高密度扩展 - 缩小光学上的片上电路。但是,鉴于硅是一种间接的带隙材料,该平台通常与其他直接带隙(例如III-V半导体)平台集成,用于芯片光源。将光源集成到硅光子学平台上的有效解决方案是实用的扩大和成熟的集成光子实现的组成部分。在这里,我们讨论了集成解决方案,并介绍了铸造厂对实现它的看法。
对二维(2D)材料(例如石墨烯,硅和德国烯)的摘要研究,由于其独特的电子和机械性能,引起了极大的关注。该迷你审查采用密度功能理论(DFT)来比较这三种材料的电子特性。结果表明,通过SP²杂交的石墨烯具有出色的电导率和高机械强度,晶格常数为2.46Å。硅和德国烯分别由硅和锗原子组成,由于它们能够通过各种方法张开带隙,因此具有更高的表面反应性和高级电子应用的潜力。硅的晶格常数为3.90Å,电负性为1.9,而德国烯的晶格常数为3.97Å,电负性为2.01。硅和石墨烯的带状结构没有表现出带隙,在p轨道中具有主导状态,而德国烯显示半导体行为,在K点处有零带隙的开口。石墨烯显示出高的平面刚度,而硅和德国烯具有各自的刚度,石墨烯和硅脆性是脆性,而德国烯则是延性的。这项研究提供了对石墨烯,硅和德国烯电子特性的基本差异的见解,以及它们在半导体技术和高速,低能电子设备中的潜在应用。
采用随机策略结合群论、图论和高通量计算,系统地扫描了共87种新的单斜硅同素异形体。新的同素异形体中,13种具有直接或准直接带隙,12种具有金属特性,其余为间接带隙半导体。这些新型单斜硅同素异形体中有30多种表现出大于或等于80 GPa的体积模量,其中3种表现出比金刚石硅更大的体积模量。只有两种新的硅同素异形体表现出比金刚石硅更大的剪切模量。详细研究了所有87种Si单斜同素异形体的晶体结构、稳定性(弹性常数、声子谱)、力学性能、电子性能、有效载流子质量和光学性能。五种新的同素异形体的电子有效质量ml小于金刚石硅的电子有效质量。所有这些新型单斜硅同素异形体在可见光谱区都表现出强吸收。结合它们的电子带隙结构,这使它们成为光伏应用的有前途的材料。这些研究极大地丰富了目前对硅同素异形体的结构和电子特性的认识。
过去 50 年来,世界各地的研究人员一直在寻找制造硅基或锗基激光器的方法。埃因霍温工业大学 (TU/e) 和慕尼黑工业大学 (TUM) 的研究团队与耶拿大学和林茨大学的同事合作,现已开发出一种可以发光的硅锗合金(EMT Fadaly 等人,《六方 Ge 和 SiGe 合金的直接带隙发射》,Nature vol580,p205(2020 年 4 月 8 日);DOI:10.1038/s41586-020-2150-y)。因此,人们认为,开发能够集成到现有芯片中的硅激光器首次指日可待。硅通常以立方晶格结晶,由于具有间接带隙,这种形式不适合将电子转换为光。研究团队迈出的关键一步是能够利用具有六方晶格的锗和硅生产锗和合金。“这种材料具有直接带隙,因此可以自行发光,”慕尼黑工业大学半导体量子纳米系统教授乔纳森·芬利 (Jonathan Finley) 说道。
双钙钛矿卤化物是可再生能源生产的有前途的材料,满足解决能源稀缺问题的标准。因此,研究这些卤化物可能对光电和太阳能电池应用有用。在这项研究中,我们使用全电位线性线性的增强平面波(FP-LAPW)方法,使用密度功能理论计算,研究了2 agircl 6(a = cs,rb,k)的结构,机械,热力学,电子和光学特性,以评估其适用于renewability的适用性,并使用全电位线性的增强平面波(FP-lapw)方法来计算。金匠公差因子,八面体因子和新的公差因子已经证实了预测化合物的立方稳定性。我们还通过计算形成焓,结合能和声子分散曲线来验证这些化合物的热力学稳定性。此外,对刚度常数的Born-huang稳定性要求证实了标题化合物的机械稳定性。为了预测准确的光电特性,我们采用了TB-MBJ电位。电子带结构的计算表明,标题为halides的直接带隙半导体性质,值分别为1.43 eV,1.50 eV和1.55 eV,分别为CS 2 AGIRCL 6,RB 2 AGIRCL 6和K 2 AGIRCL 6。此外,所有这些化合物都显示出非常低的有效电子质量,表明它们的高载体迁移率可能。这些化合物的光电导率和吸收光谱验证了我们的条带结构结果的准确性。此外,2 AGIRCL 6(A = CS,RB,K)化合物的光学性质表现出非常低的反射率和出色的光吸收系数(10 5 cm -1)在可见光光谱中,表明它们作为太阳能电池中吸收层的适合性。
摘要:具有微米孔的固体泡沫用于不同领域(过滤、3D 细胞培养等),但目前,控制其孔隙水平的泡沫几何形状、内部结构和单分散性以及机械性能仍然是一个挑战。现有的制造此类泡沫的尝试要么速度慢,要么尺寸受限(大于 80 μm)。在这项工作中,通过使用温度调节的微流体工艺,首次创建了具有高度单分散开放孔(PDI 低于 5%)的 3D 固体泡沫,其尺寸范围为 5 至 400 μm,刚度跨越 2 个数量级。这些特性为细胞培养、过滤、光学等领域的激动人心的应用开辟了道路。这里,重点放在光子学上。从数值上看,这些泡沫打开了三维完整光子带隙,临界指数为 2.80,因此与金红石 TiO 2 的使用兼容。在光子学领域,这种结构代表了第一个具有此功能的物理可实现的自组装 FCC(面心立方)结构。
电负性_A 赤道角 顶角 s轨道能量_B p轨道能量_B 原子序数_B 电负性_B s轨道能量_A 电离能_A 电离能_B p轨道能量_A 原子半径_B 原子半径_A 原子序数_A 氧化态_A 氧化态_B