摘要:锂硫电池具有较高的理论容量和能量密度,被认为是最有前途的下一代储能系统之一。然而,锂硫电池中的穿梭效应导致硫利用率低、循环性能差、倍率性能差等问题,近年来引起了大量研究者的关注。其中,对多硫化锂(LPS)具有高效催化功能的催化剂可以有效抑制穿梭效应。本文概述了近年来锂硫电池催化剂材料的进展。根据已报道的催化剂的结构和性能,将已报道的LPS催化剂材料的发展分为三代。可以发现,高效催化材料的设计不仅需要考虑对多硫化物的强化学吸附,还需要考虑良好的导电性、催化性和传质性。最后,对高性能锂硫电池催化剂材料的合理设计进行了展望。具有高电导率、同时具有亲脂和亲硫位点的催化材料将成为下一代催化材料,例如异质单原子催化、异金属碳化物等,这些催化材料的发展将有助于更高效地催化LPS,改善反应动力学,为锂硫电池高负载或快速充放电提供保障,促进锂硫电池的实际应用。
硫唑嘌呤是活性代谢物 6-巯基嘌呤的前体药物,长期以来人们认为其主要作用机制是通过阻断诸如酰胺磷酸核糖基转移酶之类的酶来抑制嘌呤腺嘌呤和鸟嘌呤的合成,从而产生无功能的核酸链。从头嘌呤合成的中断会抑制 DNA 和 RNA 的合成,从而抑制淋巴细胞等快速生长细胞的增殖。淋巴细胞特别容易受到从头嘌呤合成抑制的影响,因为它们相对缺乏嘌呤合成的替代途径,即嘌呤“补救”途径,在该途径中核苷酸由核苷酸降解产物重新合成。然而,在过去的几十年里,人们提出了多种由各种硫唑嘌呤代谢物介导的其他作用机制,包括阻断 T 细胞活化和刺激 T 细胞凋亡。长期以来有报道称硫唑嘌呤对 T 细胞功能比对 B 细胞功能更有效,尽管缺乏有力的证据支持这一点,而且我们实验室最近的研究表明硫唑嘌呤可以抑制 B 细胞和 T 细胞增殖。
摘要:铝和硫的高丰度和低成本使AL-S电池成为有吸引力的组合。但是,需要显着改善性能,并且增加硫电极的厚度和硫含量对于开发具有特定能量竞争价值的电池至关重要。这项工作报告了硫含量最高的硫电极的发展(60%wt。)迄今为止针对AL-S电池系统的报道,并对硫电极厚度对电池性能的影响进行了系统的研究。使用使用乙酰氨酰胺或尿素制成的低成本电解质时,当增加电极厚度时,电解质物种的质量缓慢被确定为硫酸盐利用率不良的主要原因,而完全粘性的离子离子液体可实现完全的硫。此外,对非常薄的电极的分析揭示了低成本电解质中降解反应的发生。总而言之,此处开发的新分析方法非常适合评估AL-S电池的新型电解质的稳定性和质量传输局限性。
f纳克技术大学,丹麦技术大学物理系,丹麦2820 G材料学院,太阳YAT-SEN大学,广州510275,H中国H中心微型/纳米电子中心(Novitas),电气和电子工程学院,电气和电子工程学院,Nanyang技术大学CNRS/NTU/THALES,UMI 3288,研究技术广场,637553,新加坡†相同的贡献 *相应的作者。Karen Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sgKaren Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sg
“我们八年前开始使用这些下一代电池化学。第一个充电周期很棒。到20周期,它是一块无用的金属,”工程与计算学院副教授比拉尔·扎哈布(Bilal El-Zahab)说。“我们必须成为电池窃窃私语者来解决他们的问题,因此在现阶段真正令人兴奋。”
摘要:锂 - 实用兴趣的硫电池需要薄层支撑以实现可接受的容量能量密度。但是,由于硫的绝缘性质和涉及溶解多硫化物电沉积的反应机制,因此无法在LI/S系统中有效地使用典型的铝电流收集器。我们使用碳涂层的Al电流收集器研究LI/S电池的电化学行为,在该收集器中,低厚度,高电子电导率,同时,由无粘合剂的几层石墨烯(FLG)允许反应产物的宿主能力。FLG启用厚度低于100μm的硫电极,快速动力学,低阻抗和1000 mAh G S -1的初始容量,300个周期后保留70%以上。使用FLG的LI/S细胞分别显示出300 WH-1和500 WH kg-1的体积和重量的能量密度,它们的值是与市售的锂离子电池竞争良好的值。■简介
外源性给药时,包括但不限于:• 1-雄烯二醇(5ɑ-雄甾-1-烯-3β,17β-二醇)• 1-雄烯二酮(5ɑ-雄甾-1-烯-3,17-二酮)• 1-雄酮(3ɑ-羟基-5a-雄甾-1-烯-17-酮)• 1-表雄酮(3β-羟基-5ɑ-雄甾-1-烯-17-酮)• 1-睾酮(17β-羟基-5ɑ-雄甾-1-烯-3-酮)• 4-雄烯二醇(雄甾-4-烯-3β,17β-二醇)• 4-羟基睾酮(4,17β-二羟基雄甾-4-烯-3-酮)• 5-雄烯二酮(雄甾-5-烯-3,17-二酮)• 7ɑ-羟基-DHEA • 7ß-羟基-DHEA • 7-酮-DHEA • 11ß-甲基-19-去甲睾酮 • 17ɑ-甲基表硫甾烷醇(表雄甾烷) • 19-去甲雄烯二醇(雌-4-烯-3,17-二醇) • 19-去甲雄烯二酮(雌-4-烯-3,17-二酮) • 雄甾-4-烯-3,11,17- 三酮(11-酮雄烯二酮,肾上腺酮) • 雄甾烷醇酮(5ɑ-二氢睾酮,17ß-羟基-5ɑ-雄甾烷-3-酮) • 雄烯二醇(雄甾-5-烯-3ß,17ß-二醇) •雄烯二酮(雄甾-4-烯-3,17-二酮)• 勃拉雄酮 • 勃地酮 • 勃地酮(雄甾-1,4-二烯-3,17-二酮)• 卡鲁司酮 • 氯司替勃 • 达那唑([1,2]恶唑并[4',5':2,3]孕-4-烯-20-炔-17ɑ-醇)• 脱氢氯甲基睾酮(4-氯-17β-羟基-17ɑ-甲基雄甾-1,4-二烯-3-酮)• 脱氧甲基睾酮(17ɑ-甲基-5ɑ-雄甾-2-烯-
摘要:石墨烯电子纺织品(电子纹理)最近被认为是功能性纺织品领域的有前途的材料以及柔性/可穿戴电子产品。在本文中,我们报告了一种高度导电,柔性的石墨烯织物,该织物由氧化石墨烯(RGO)(RGO)片和玻璃织物组成,结合了表面化学和简单的浸入方法。我们还研究了它们的电子和机电特性,用于电子纺织品和柔性电子。拟建的RGO玻璃织物(RGOGFS)表现出良好的板电阻为30〜40Ω /□。此外,还研究了灵活性和机械稳定性。我们的RGOGF可以保持大于〜5 mm的曲率半径的稳定电阻。良好的电导率和柔韧性表明,RGOGFS在电子纹理和柔性设备中的应用可能具有巨大的潜力。
石墨烯是一种二维的基于碳的光催化剂,显示出很大的希望。这项研究使用氧化石墨烯(GO)与传统的水处理程序,例如离子交换和吸附进行了比较新有机染料甲基蓝(MB)的光催化降解。在这项研究中,通过在水溶液中的光降解甲基蓝(MB)评估了GO和过氧化氢(H 2 O 2)的光催化活性。使用X射线粉末衍射(XRD),扫描电子显微镜(SEM),能量色散光谱(EDX)和傅立叶变换红外射线光谱(FTIR)检查所得的GO纳米颗粒。XRD数据验证了以2θ≈10.44°为中心的强峰,对应于GO的(002)反射。我们的研究发现,纳米颗粒和H 2 O 2在自然阳光照射下在60分钟内的pH〜7时,H 2 O 2的h 2 O 2达到了〜92%的照片脱色。此外,还研究了溶解氧(DOC)和H 2 O 2对MB降解的影响。实验结果表明,氧是增强光催化降解的决定性因素。直接光催化(MB/GO)和H 2 O 2辅助光催化(MB/H 2 O 2/GO)导致DOC 3.5 mgl -1的降解速率常数(K1)从0.019增加到0.019升至0.019升至0.042 min -1。在这种情况下,H 2 O 2充当电子和羟基自由基(•OH)清除剂;但是,添加H 2 O 2应达到正确的剂量,以增加MB分解。将初始DOC含量从2.8增加到3.9 mgl -1导致降解速率常数(K1)从0.035增加到0.062 min -1。对直接和H 2 O 2辅助光催化的光降解机理和动力学进行了研究。
水泥添加剂或水泥研磨助剂 (CGA) 的范围从纯研磨助剂到功能性添加剂和性能增强剂。后者是目前使用最广泛的产品类型。性能增强剂可以提高研磨过程的效率并改善关键的机械性能,例如抗压强度。使用性能增强剂的主要原因之一,除了降低能耗外,是需要降低任何给定水泥的熟料系数。熟料不仅是水泥中最昂贵的成分,也是造成最高相关二氧化碳排放量的成分。如果可以用较低的熟料系数保持相同的水泥性能,那么这是一个双赢的局面。当前的性能增强剂通常依赖于乙二醇和胺化学的组合。这些可使抗压强度提高约 10-20%,同时将熟料系数降低高达 5%,尽管个别情况可能有很大差异。这不仅仅是添加更多产品来获得更大的强度增加或更大的熟料减少的情况。由于这些化学物质在水泥水化过程中相互作用,添加过量会导致性能下降。为了进一步减少熟料,应该研究替代技术,先进材料公司 First Graphene Ltd 与 Fosroc International(一家全球建筑行业高性能化学品制造商和供应商)之间的合作显示出巨大的前景。该合作正在考虑利用添加量极小的石墨烯来实现更高水平的熟料替代。