• 我们的目标是通过研究、开发、应用和转让可扩展的自动化软件工程技术来提高 NASA 软件的可靠性和稳健性,以及软件工程的生产力,以满足 NASA 的软件挑战。• 我们借鉴了计算机科学的许多技术(例如程序验证、自动推理、模型检查、静态分析、符号评估和机器学习),并将它们应用于软件的验证和确认以及代码生成。
• 我们的目标是通过研究、开发、应用和转移可扩展的自动化软件工程技术来应对 NASA 的软件挑战,从而提高 NASA 软件的可靠性和稳健性以及软件工程的生产力。
• 我们的目标是通过研究、开发、应用和转让可扩展的自动化软件工程技术来提高 NASA 软件的可靠性和稳健性以及软件工程的生产力,以满足 NASA 的软件挑战。 • 我们借鉴了计算机科学中的许多技术(例如程序验证、自动推理、模型检查、静态分析、符号评估和机器学习),并将它们应用于软件的验证和确认以及代码生成。
散热器通过调节其热输出来维持电子设备的最佳工作温度,从而起着至关重要的作用。有效的设计对于确保有效的散热量至关重要,从而延长了组件寿命和整体系统性能。随着表面积的增加,由于更多的接触点而引起的热量耗散速率也会增加。这意味着更大的表面积可以从散热器到周围的空气中更大的热传递,从而增强冷却。在紧凑的系统中,在包含结构的同时达到一个较大的表面积至关重要。鳍和销阵列,微通道散热器或折叠鳍结构等技术可以增强热量消散而不会增加尺寸。多孔材料,例如金属泡沫,为热传递提供了巨大的内部表面区域。选择散热器的材料时,导热率是关键参数。铜的高热电导率为390-400 w/m·K,使其非常适合高端应用。但是,其成本和密度可能构成挑战。铝的导热率相对较低,但更具成本效益和更轻。像石墨烯这样的新材料具有出色的热导率,并且可能在HSF设计方面具有希望。材料的选择取决于特定的应用要求,即考虑效率,成本,质量和坚固性等因素。有效的散热器设计取决于三种主要的传热机制:传导,对流和辐射。鳍片或销阵列可以增加表面积,而风扇或鼓风机可以提高流速。传导对于将热量从组件转移到外部环境至关重要,从而进一步耗散。总而言之,选择合适的材料和优化散热器设计对于有效的热管理至关重要。热性能优化涉及通过改善热量交换的热界面材料保持热源和散热器之间的良好接触。适当的热路径分布和避免间隙对于有效的热传导至关重要。对流在冷却中起着至关重要的作用,最大化表面积对于提高对流效率至关重要。辐射是散热器设计中的另一个重要机制,Stefan-Boltzmann定律描述了它。使用高发射率的涂料可以显着增强辐射传热。散热器的几何特性在优化热辐射方面也起着至关重要的作用。为了实现有效的热量散热,特征应尽可能多地暴露表面积。散热器的效率在很大程度上取决于其表面,对流传热取决于表面积。计算给定的散热速率的必要表面积涉及使用方程q = h×a×Δt。傅立叶传导定律描述了通过材料的传热:QCONDUCTION = -K×A×ΔT/L。要确定鳍有效性,请使用等式q = h×a×ΔT来计算单个鳍片的传热速率。通过优化热电阻,对流和辐射,可以设计有效的散热器,以有效地将热量从表面散开。制定散热器的过程涉及几个阶段,这些阶段需要特定的工程计算以最大程度地提高热效率。要定义其性能,需要考虑三个关键因素:瓦特,环境温度(TA)和最高连接温度(TJ)中的散热耗散需求(Q)。例如,如果电子组件耗散20 W的热量,则Q = 20 w。然后通过从连接温度中减去环境温度来计算所需的温度升高(ΔT)。散热器的热电阻必须达到所需的温度升高,rth =ΔT/q = 55/20 = 2.75°C/w。散热器选择的类型和材料取决于诸如热量,重量和成本等因素。铝的导热率约为205 W/m·K,因此由于其有效性和成本而适合使用。调整散热器的尺寸和形状,以满足所需的热电阻水平,其中包括鳍片类型,销型或两者。鳍间距计算为:鳍间距=散热器的高度/鳍数。选择散热器设计时,请确保满足热电阻计算。空气对流传热系数(H)通常为10 - 50 W/m²·k。有效的热电阻计算为:rth,总计= rth,散热器+rth,界面+rth,结。按照设计信息构建物理散热器,并通过使用温度计测量温度差异来评估。取决于结果,可以对设计进行一些修改,以达到必要的热电阻。在设计电子设备时,适当的热管理至关重要,因为错误可能会产生负面影响。一个常见的错误是低估了适当的散热所需的表面积,这可能导致温度状态增加,甚至会导致组件的热冲击。制造有效的铝热散热器对于冷却电子设备至关重要,并防止它们过热。散热器用于消散由晶体管,CPU和功率放大器等组件产生的热量。制作散热器的过程涉及多个步骤,包括选择合金,设计散热器以进行最佳性能,准备材料,完成表面以增强与组件的接触,创建鳍以增加表面积,并将所有部分组装在一起。铝是一种流行的选择,因为其出色的导热率和轻质性质。但是,并非所有铝合金都适合散热器。通常使用6061和6063,因为它们具有良好的导热率且具有成本效益。散热器的设计应考虑尺寸,形状和鳍排列等因素,以确保最佳性能。准备材料涉及使用锯或CNC机器将其切成所需的尺寸,并在此过程中佩戴安全齿轮。整理表面需要砂纸逐渐磨碎的砂纸,然后使用金属抛光化合物进行抛光。这会产生光滑的表面,从而促进与热生成分量更好的接触。创建鳍涉及使用CNC机器或类似工具将其均匀地切入铝材材料,从而大大增加了散热器的表面积并允许更好的散热。散热器的鳍的尺寸和形状均匀,以确保在整个散热过程中保持稳定的性能。
第四次工业革命建立在微处理器和互联网革命的基础上,并加速了数字社会的出现。它的特征是无处不在的数据连接,存储和处理能力。这些功能具有多种表现形式 - 人工智能,自动驾驶汽车,自然语言翻译人员,智能城市,数字货币,精确农业等 - 在形成性创新阶段中一直正常发展。作为美国,欧洲和中国的发达经济体 - 建立了支持这些新生技术的广泛部署所必需的生态系统,即使是外围的劳动力市场,也可能会在可能获得可宜居工资的那种技能上发生转变。这可能会在未来5到15年内发生,而不重新技能的人可能会面临技术引起的失业或严重降低的工资(Brynjolfsson,2018年; Brynjolfsson,2021年)
本文介绍了在先进新型武器平台中开发预测和健康管理 (PHM) 功能所面临的程序和技术挑战。在最高级别,它提出了将 PHM 优势和目标与后勤支持概念以可衡量的方式联系起来的具体策略。作者还提供了使用此方法的示例,以确保 PHM 元素已购买到飞机上所需的东西。在下一个级别,作者评估了 PHM 算法和传感器套件中使用的验证和确认 (V&V) 方法。在正向拟合应用中,现场和最终系统数据通常较少可用,这给诊断覆盖率、检测率和误报率的验证带来了额外的障碍。作者将演示特定工具,以使用测试台开发数据、类似组件故障数据以及最终的现场数据的组合来提供 V&V 用例。将介绍故障检测、诊断和预测功能元素的指标。此外,作者讨论了模拟和真实故障数据的使用,以及为预测系统现场性能而制定的策略。讨论了信号噪声、测量不确定性和阈值设置的影响。还讨论了具有现场数据可用性的“性能指标增长”概念,并提供了这些技术和工具在应对新飞机部署挑战中的具体应用。