Markets News 6 Mini-LEDs to challenge OLEDs in high-end display market • GaN device market grows at 12.13% CAGR to $7bn in 2022 Microelectronics News 8 CML buys Microwave Technology • Micross buys KCB Solutions • NEC achieves record output power in 150GHz band using mass- producible GaAs technology Wide-bandgap electronics News 11 Wolfspeed to supply SiC devices for梅赛德斯 - 奔驰EV•CEA和雷诺开发基于WBG的双向板载充电器•Infineon符合与Resonac的SIC材料材料多年供应与合作协议•Finwave加入了美国半导体创新联盟•Navitas•Navitas在塞里卡尼(IC JV)的材料和加工设备中剩余的股份•Meterogation 28 k-Space启动•X. XR XR X.XRFFIR•xrfffir• Epi appoints Neil Gerrard as director of epitaxy LED News 34 Nichia and Infineon launch first fully integrated micro-LED light engine for HD adaptive driving beams • MICLEDI demos red AlInGaP micro-LEDs at CES Optoelectronics News 48 NIST and AIM Photonics collaborating to boost photonic chip designs to 110GHz •Ganvix and BluGlass to co-develop green GaN VCSELS•荷兰联盟投资350万欧元的Lionix•OpenLight任命CEO Optical Communications News 48生产诗人的光学发动机,以100G,200G和400G PHOTOVOLTAICS NEWS 52 FRAUNHOFER ISE ISE ISE ADVANCE ADVANCTION PEROVSKITE PEROVSKITE -SILICON TANDEM Cell and Module to Industrial Maturility Maturility Maturility
2D材料令人兴奋,其中构图和原子布置在属性中起着决定性作用。发现新2D材料的潜在途径是从层压的3D相开始。常见的方法是将单个或几个原子层从具有强的化合物中剥落,具有强平面键和弱平面外键。剥落过程是通过机械力或离子交换和渗透肿胀促进的。[1,3,8]这包括均带有范德华或氢键之间的材料,例如石墨,MOS 2,H-BN和金属氧化物。尤其是,针对2D金属氧化物的注意力是由于其吸引人的功能而刺激的,并且富含结构和化学多样性以及电子特性。[9]它们的大量可能的氧化态对于实现较大的伪容量[8]的优势是与碳纤维和硫化物更高的化学稳定性相结合的,这对于增强电极的耐用性是可取的。[10]此外,氧化钛(TiO 2)纳米片具有适合光催化的特征,并允许逐层自组装。[11]仍然,新型合成途径是可取的,同时保持目标功能。除了机械剥落外,选择性蚀刻(也称为化学去角质)已被证明是从层压中层中层次较强的层压父3D晶体合成2D材料的替代途径。旗舰示例是2D MXENES,[5]由M n + 1 x n t z的通用公式描述,其中m是早期过渡金属,x为c和/或n,t z表示表面终止官能团,-o,-o,-oH,-f和cl。[12-14] MXENES通常是由A-Group元素的选择蚀刻来产生的,主要是来自父级最大相位,这是一大批原子层压板,迄今为止有150多个成员。[15]通过选择性蚀刻A层,实验研究已经确定了大约30种不同的MXENE,包括合金MXENES,显示出很高的计量物,用于从能量存储和催化到
图。2。示意图说明了对带电缺陷的DFT超级电池计算的远程筛选能量的评估。(a)带电荷Q的批量缺陷具有介电筛选,该筛选有限地扩展,刻有正方形,表明计算超级电池的范围。(b)DFT Supercell在超级电池并行教的全净电荷Q中汇总,通过从超级电池边缘绘制电子来筛选近场的区域,从而降低边缘区域。(c)等效体积球,半径为R Vol,需要评估远程筛选能量。(d)R皮肤减少了此半径以解释未经筛选的细胞体积,从而导致R JOST定义的JOST经典介电筛选。
通过将碳和硅添加到碳化物表面上,我的论文揭示了一种创建二维碳化硅碳化物的新方法,这种材料可能导致更有效的电子设备。如大多数人所知道的那样,今天的电子产品严重依赖硅。为了改善我们的设备,这些硅电子设备已变得越来越小,但现在已经达到了极限。想象一下,如果不使用庞大的三维结构,我们可以使用堆叠在一起的超薄原子。这些床单被称为二维(2D)材料,自2010年获得诺贝尔奖获奖石墨烯以来就引发了一波研究。石墨烯是一层碳原子,向我们展示了2D材料可以彻底改变技术,但它有局限性。例如,石墨烯没有带隙,这对于控制计算机等设备中的电流至关重要,我们需要清除开/关状态(例如管理汽车流量的交通信号灯)。此频段间隙对于创建二进制二进制(电流)和零(无电流)是计算机逻辑的基础至关重要。带有带隙的材料称为半导体,具有直接带隙的材料对于LED,激光器和太阳能电池等设备特别有用。直接带隙就像是一条井井有条的道路,在交通信号灯处停止后,允许汽车平稳,高效地加速,而间接的频段隙就像是一条扭曲的道路,使汽车需要更长的时间才能达到全速。建立在这一发现的基础上,我的目标是直接在TAC水晶上创建2D SIC。在我的研究中,我专注于创建一种新的2D材料:碳化硅(SIC),将硅原子和碳原子组合成单层。科学家认为,2D SIC可能是一个改变游戏规则的人,因为它具有直接的乐队差距,但使其非常具有挑战性。最近,一个突破表明,在顶部加热用薄薄的碳化物(TAC)加热碳化硅晶体可以帮助形成2D SIC。通过将碳和硅添加到加热的TAC表面,我成功形成了2D SIC。这种方法使我可以更好地控制编队过程,并更深入地了解2D SIC的成长方式。另外,通过调整碳的量,我可以在2D SIC的顶部创建石墨烯层。石墨烯的稳定性提高了将其用作2D SIC上的保护层的令人兴奋的可能性。未来的研究可以探索这种可能性。最重要的是,我的作品展示了一种创建2D SIC的新方法,使其更接近被用于下一代电子和光学设备。这可能会导致更快,更高效的技术,继续我们用硅取得的进步,但将其提升到一个新的水平。
高熵碳化物 (HEC) 备受关注,因为它们是超高温和高硬度应用的有希望的材料。为了发现具有增强屈服强度和硬度的碳化物,需要基于机制的设计方法。在本研究中,提出了位错核原子随机性作为提高硬度的机制,其中位错核处不同元素之间的随机相互作用使位错更难滑移。基于密度泛函理论计算了 a ∕ 2 ⟨ 1 ̄ 10 ⟩ {110} 刃位错的 Peierls 应力,其中通过增加位错核处的元素数量来增加原子的随机性。结果表明,Peierls 应力在统计上随着元素数量的增加而增加,表明加入更多元素可能会产生更高的硬度。基于这一指导原则,我们制备了三种八阳离子 HEC(Ti、Zr、Hf、V、Nb、Ta、X、Y)C(X、Y = Mo、W、Cr、Mo 或 Cr、W),其成分由从头计算的形成焓和熵形成能力决定。单相致密陶瓷均表现出约 40 GPa 的高纳米压痕硬度。位错核心处不同元素之间的随机相互作用为提高结构陶瓷的硬度提供了一种机制。
成长事业推进部 下一代课程负责人 〒920-8203 金泽市仓月 2-1(石川县工业技术研究中心企划指导部内) 电子邮箱:semise@irii.jp 电话:(076)267-8081 传真:(076)267-8090
1。Kim,Y.-K。和Al。,复合材料B部分B。 210,108638。 2。 Zhou,J。和Al。,《合金与化合物杂志》,2021年。 859,157851。 3。 He,M.Y。和Al。,今天应用的材料,2021年,第1卷。 25,101162。 4。 Taherini,S。和Al。,Actathroad,2021年,第1卷。 208,116714。 5。 Mehranpour,M.S。和Al。 793,139884。 6。 Han,B。和Al。,2022年,第1卷。 434,128241。 7。 Singh,S。和Al。,材料,2020年,第1卷。 14,100917。 8。 Light,T。和Al。,Letters,2021,第1卷。 293,129682。 9。 Bahrami,A。和Al。,《合金与化合物杂志》,2021年,第1卷。 862,158577。 10。 Xiao,J.-K。和Al。,《合金与化合物杂志》,2020年,第1卷。 847,156533。 11。 Neto,A.H。和Al。,《现代物理学评论》,2009年,第1卷。 81,109-162。Kim,Y.-K。和Al。,复合材料B部分B。210,108638。2。Zhou,J。和Al。,《合金与化合物杂志》,2021年。859,157851。3。He,M.Y。和Al。,今天应用的材料,2021年,第1卷。25,101162。4。Taherini,S。和Al。,Actathroad,2021年,第1卷。208,116714。5。Mehranpour,M.S。和Al。793,139884。6。Han,B。和Al。,2022年,第1卷。434,128241。7。Singh,S。和Al。,材料,2020年,第1卷。14,100917。8。Light,T。和Al。,Letters,2021,第1卷。293,129682。9。Bahrami,A。和Al。,《合金与化合物杂志》,2021年,第1卷。862,158577。10。Xiao,J.-K。和Al。,《合金与化合物杂志》,2020年,第1卷。847,156533。11。Neto,A.H。和Al。,《现代物理学评论》,2009年,第1卷。 81,109-162。Neto,A.H。和Al。,《现代物理学评论》,2009年,第1卷。81,109-162。