摘要:碳纳米带是由完全融合的边缘共享芳烃环组成的圆柱形分子。由于其美观的结构,它们获得了不寻常的光电特性,可能适用于纳米电子学和光子学的一系列应用。然而,其合成成功率非常有限,导致其光物理特性仍然很大程度上未知。与碳纳米环(由单键连接的芳烃)相比,纳米带的强结构刚性可防止其发生偏离原始高对称构象的重大变形,因此影响其光物理特性。在此,我们研究了成功合成的(6,6)CNT(碳纳米管)带段的光诱导动力学。使用非绝热激发态分子动力学模拟对此过程进行建模,揭示了不同类型碳原子上激发态波函数定位变化所起的关键作用。这样可以详细描述整个纳米带骨架中的激发态动力学和空间激子演化。我们的研究结果提供了有关激发态电子特性和内部转换率的详细信息,这些信息可能对设计用于纳米电子和光子应用的纳米带有用。
环氧树脂是一种反应性预聚物,其特征在于存在由两个碳原子和一个氧原子组成的环状结构的环氧基团,通过自均聚或与胺、酸酐、酸、醇或酯等共反应物发生交联反应形成大分子网络[1-3]。环氧树脂已被公认为最广泛使用的具有战略意义的热固性材料,由于其固有的机械和化学稳定性、耐热和耐腐蚀性、电绝缘性和强粘结性,通常应用于防腐涂料、粘合剂、半导体封装材料、电绝缘材料和高性能复合材料[4,5]。环氧树脂市场由印度、韩国、中国和日本等亚洲国家主导,其份额高达41.8%。这受到与北美和欧洲相比环境法规相对较少和国家鼓励制造业政策的影响,并且由于产品的性质,在亚洲大陆的发展中国家和新兴国家中得到广泛使用,该产品在道路和建筑物等建筑领域需求量很大。2019 年至 2024 年期间的年均增长率也是亚洲最高,为 6.9%,其次是中东和非洲、南美、北美和欧洲。2022 年,
基于硅的量子发射器是大规模量子集成的候选物,这是由于其单光子发射特性和具有长的自旋相干时间的自旋光子接口的潜力。在这里,我们使用飞秒激光脉冲与基于氢的缺陷激活和单个中心水平的钝化相结合,展示了本地写作和擦除选定的发光缺陷。通过在碳植入硅的热退火过程中选择形成气体(n 2 /h 2),我们可以选择一系列氢和碳相关的量子发射器的形成,包括T和C I中心,同时钝化了更常见的G-Centers。C I Center是一种电信S波段发射器,具有有希望的光学和自旋特性,由硅晶格中的单个间隙碳原子组成。密度功能理论计算表明,在存在氢的情况下,C I CENTER亮度通过几个数量级增强。fs-laser脉冲在局部影响量子发射量的钝化或激活,以氢的氢,以形成所选量子发射器的程序。
GraphDiyne(GDY)的研究在出生后的头十年中经历了快速增长。作为一种新的二维原子晶体,GDY具有由SP和SP 2杂交碳原子组成的独特结构,并且对科学家表现出许多前所未有的内在特性。由于GDY的固有特征,在广泛的研究领域中发现了一些新现象和特性。gdy在基本和应用科学方面取得了重大突破,形成了创新的科学概念,并取得了巨大的成就。在这些领域中,电化学能源存储和转换是基本应用研究的两个重要且令人印象深刻的领域。本综述着重于将GDY用作电化学能源存储和转换的高级电化学接口。它首先引入了GDY作为电化学接口的优势和固有的兼容性。然后,GDY在电化学存储和转换方面的最新成就得到了评论,我们可以从中欣赏GDY作为交替和创新电化学界面的重要材料的固有优势。最后,讨论了对电化学能源存储和转换的GDY界面的挑战和进一步观点的新见解,旨在促使深入研究及其在实际应用中的表现。
在哺乳动物中,DNA甲基化是指在DNA-甲基转移酶(DNMT)的作用下用S-腺苷甲基氨酸(SAM)供应甲基,将其甲基转移到甲基环胞嘧啶环的第5个碳原子中,形成甲基化的甲基化脱氧糖苷(5MC)(5MC)(5MC)(5MC)。5MC通常出现在CpG的胞嘧啶上,CpG位点可以占哺乳动物基因组的5–10%。CpG的甲基化状态与基因表达密切相关,DNA甲基化可以抑制辅助基因的活性,而脱甲基化可以诱导基因重新表达。表型差异并不能完全解释遗传差异,研究表明,DNA甲基化可以解释表型差异,例如双胞胎,克隆动物的表型差异(6-8)。DNA甲基化主要通过调节与脂肪细胞分化,转录辅助因子和与脂肪代谢相关的转录因子的表达来调节脂肪组织的生长和发育(9)。张张已经表明,基因启动子区域的甲基化可能抑制与脂肪代谢相关的基因的表达,从而影响脂质液滴结构和脂肪沉积(10)。
摘要:氨基硅烯分子(HSiNH 2 ,X 1 A ′) 是不饱和氮硅烯的最简单代表,它是在单次碰撞条件下通过气相基元反应形成的,反应涉及硅基自由基(SiH)和氨(NH 3 )。反应由硅基自由基无势垒加成到氮的非键合电子对上引发,形成 HSiNH 3 碰撞复合物,然后通过从氮原子中失去氢原子,单分子分解为氨基硅烯(HSiNH 2 )。与等价氨基亚甲基卡宾 (HCNH 2 , X 1 A ′ ) 相比,通过用硅取代单个碳原子,对等价甲亚胺 (H 2 CNH) − 氨基亚甲基 (HNCH 2 ) 和氨基硅烯 (HSiNH 2 ) − 硅亚胺 (H 2 SiNH) 异构体对的稳定性和化学键产生了重大影响;例如,卡宾与硅烯的热力学稳定性逆转了 220 kJ mol − 1。因此,发现第十四主族元素硅的等价性与原子碳几乎没有相似性,不仅对反应性而且对热化学和化学键也表现出显着影响。
访问微生物学是一个开放的研究平台。可以通过本文的在线版本找到预印刷,同行评审报告和编辑决策。2023年8月29日收到; 2024年5月14日接受;于2024年7月4日发布作者隶属关系:1个生物端里控制Associates,Inc。,PO Box 3659,普林斯顿,NJ 08540-3659,美国; 2 Luminultra Technologies Ltd,皇家路819号,B楼建筑物,弗雷德里克顿,NB E3G 6M1,加拿大。*通信:Frederick J. Passman,PassCapt@live。com关键字:ATP;生物负责;柴油机;燃料; qpcr。缩写:AEC,腺苷酸能电荷;方差分析,变异分析; ATP,三磷酸腺苷; [CATP],细胞ATP浓度; CN,C碳; N-分子中的碳原子数量;简历,方差系数; GC,基因副本; LOD,检测极限; OTU,运营分类单元; PCR,聚合酶链反应; QPCR,定量PCR; RLU,相对光单元; [TATP],总ATP浓度; TF,全真菌; TP,原核生物。本文的在线版本可以使用五个补充表。000695.V4©2024作者
摘要:本文的重点是基于石墨烯和天然聚合物(例如纤维素和壳聚糖)的导电纳米复合材料的开发。石墨烯是排列在蜂窝晶格中的单层碳原子,具有非凡的电气,机械和热性能,使其成为聚合物复合材料的吸引人填充物。但是,挑战在于有效地将石墨烯片分散在聚合物矩阵中。所介绍的工作探讨了将多糖链接枝到氧化石墨(氧化石墨烯)上的新策略,以改善其在纤维素和壳聚糖基质中的兼容性和分散性。将所得的复合材料与金或镍纳米颗粒掺杂,以进一步增强其电和催化特性。采用了详细的表征技术,包括光谱和微观方法,用于分析已发达的纳米复合材料的结构,形态和特性。论文分为三个主要部分:1)关于石墨烯,多糖及其生物复合材料的文献综述; 2)描述实验材料和方法; 3)对结果的科学讨论,以三个研究出版物的形式提出。研究结果表明,成功合成了具有提高兼容性和性能的导电纳米复合材料,为在电子,催化和电磁屏蔽等区域中应用这些可持续性和多功能材料开辟了新的途径。
探索新的碳基材料1,2一直是纳米材料的科学研究的焦点,这是由2D碳同倍型3、4(例如石墨烯5)的非凡特性驱动的。该材料包括在六角形晶格中排列的单层碳原子。它已成为具有特殊电气,热和机械特性的范式改变材料6,7。石墨烯的独特特性刺激了各种创新应用,例如与能量转换和存储相关的应用8。在不断发展的2D碳同素异形体9、10的景观中,最近的突破将曲目扩大到了著名的石墨烯之外。Biphenylene网络11,Gamma-Gampaphyne 12,单层无定形碳13、14和单层富勒烯网络15、16的合成拓宽了可靠的2D碳基材料,这表明了新的趋势趋势融合了电子产品。特别是,以4、6和8个原子相互连接的环为特征的双苯基网络(BPN)介绍了一种新型的蜂窝状结构,该结构以石墨烯的变体出现,并展示了有希望的电子和机械性能11。其经常间隔的双苯基单元对其独特的结构17 - 19和光电子20,21
DNA(脱氧核糖核酸)是一种有机分子,负责构成活生物体的遗传信息的储存和传播。在真核生物(例如动物,植物和真菌)中,DNA中存在于细胞核中,由三种化学物质组成,这些化学物质是氮基碱,一种由五个碳原子(五五糖)和磷酸酸自由基形成的糖。其显微镜大小会导致使用高级电子显微镜方法观察它。然而,可以从提取大量植物细胞或动物分子中鉴定溶液中DNA分子的存在。遗传材料提取技术取决于样品的不同,涉及:细胞壁和膜裂解(物理方法:机械裂解;分子的搅拌和化学方法:产生高血压培养基;通过洗涤剂对膜脂质的溶剂化;蛋白质降解和/或沉淀(降解:酶(蛋白酶K)和沉淀:NaCl;苯酚/氯仿/等醇混合物); RNA降解:酶RNase; DNA沉淀:相分离 - 绝对乙醇;洗涤:DNA转移和灌洗,乙醇70%;烘干;重悬:在轻轻的Alcaline Pull或超纯水中进行重肌剥离。提取程序后,定量DNA,其浓度是所有样品的标准化,并且可以存储用于识别程序。