1简介全球汽车塑料市场的价值为2022年295亿美元。预计在2023年至2030年之间,它将以com磅的年度增长率(CAGR)为5%。低到中端乘用车占6%至10%的塑料,总重量超过110-120千克。减轻车辆的重量并增加对排放控制的关注是提高高性能塑料市场增长的关键因素。在制造技术方面,注射成型占2022年所有流程中56%以上的最大份额,但就处理的原材料,聚丙烯(PP)而言,其可回收版本及其回收版本以32%的份额为汽车塑料市场[1]。设计人员使用仿真软件通过使用肋骨在设计阶段在关键方向上增加零件的惯性,而肋骨是宏观区域中构成的表面特征。根据标准[2,3],B。Sha等人,微观结构的定义也用于聚合物技术中。在他们的研究中称微结构为200 µm以下的表面积单位[4]。这些结构,除了具有美学目的外,还要使用产品的机械性能。在这种情况下,
摘要:由于多体效应和较强的电子 - 电子相互作用,准二维材料(例如碳纳米管)中电子带隙和激子结合能的测量很具有挑战性。与众所周知的电子带隙的散装半导体不同,低维半导体中的光学共振由激子主导,使其电子带隙更难测量。在这项工作中,我们使用非理想的P-N二极管测量了聚合物包裹的半导体单壁碳纳米管(S-SWCNTS)网络的电子带隙。我们表明,由于界面陷阱状态的存在,我们的S-SWCNT网络具有较短的少数载体寿命,从而使二极管非理想。我们使用来自这些非理想二极管的生成和重组泄漏电流测量具有不同直径的不同聚合物包裹的S-SWCNT的电子带隙和激子水平:ARC放电(〜1.55 nm),(7,5),(7,5)(0.83 Nm),(0.83 Nm)和(6,5),(6,5,76 nm)(0.76 nm)。我们的价值观与理论预测一致,从而深入了解S-SWCNT网络的基本属性。此处概述的技术展示了一种可靠的策略,可以应用于测量各种纳米级和量子限制的半导体的电子带隙和激子结合能,包括依赖于纳米线的最现代的纳米晶体管。
摘要:在过去的二十年中,研究人员一直在探索与碳纳米管(CNT)合并形状内存聚合物(SMP)的潜在好处。通过将CNT作为SMP中的加固,它们的目的是提高机械性能并提高形状固定性。然而,CNT的显着内在特性也为驱动机制(包括电 - 热反应)开辟了新的途径。这为开发软驱动器的可能性开辟了可能性,这些动力器可能会导致组织工程和软机器人技术等领域的技术进步。SMP/CNT复合材料提供了许多优势,包括快速驱动,遥控,挑战性环境中的性能,复杂的形状变形和多功能性。本综述提供了过去几年对具有热固性和热液基质的SMP/CNT复合材料进行的研究的深入概述,重点是CNT对纳米复合材料对外部刺激的反应的独特贡献。
摘要:使用简单的化学浴沉积方法,将纳米结构的铁二硫化物(FES 2)均匀沉积在再生纤维素(RC)和氧化的碳纳米管(CNT)基于氧化的碳纳米管(CNT)的复合膜上,以形成RC/CNT/FES/FES 2复合膜。RC/CNT复合膜是FES 2微球的均匀沉积的理想底物,这是由于其独特的多孔结构,较大的特定表面积和高电导率。polypyrole(PPY),一种导电聚合物,以提高其电导率和循环稳定性。由于FES 2具有高氧化还原活性和具有高稳定性和电导率的PPY的协同作用,RC/CNT/FES 2/PPY复合电极表现出出色的电化性能。用Na 2测试的RC/CNT/0.3FES 2/PPY-60复合电极因此,在1 mA cm-2的电流密度下,水溶液可以实现6543.8 mf cm-2的优异面积电容。电极在10,000电荷/放电周期后保留了其原始电容的91.1%。扫描电子显微镜(SEM)图像显示,在10,000周期测试后,在RC/CNT/0.3FES 2/PPY-60膜中形成了孔径为5-30μm的离子转移通道。由两种相同的RC/CNT/0.3FES 2/PPY-60复合电极组成的对称超级电容器设备提供了1280 MF CM - 2的高度电容,最大能量密度为329μWHCM - 2,最大功率密度为24.9 mW cm-w cm-w cm-w cm-w cm-w cm-2%,且86-2%2%。在40 mA cm-2处的循环在1.4 V的宽电压窗口进行测试时。这些结果表明,RC/CNT/FES 2/PPY复合电极的最大潜力用于制造具有高工作电压的高性能对称超级电容器。
摘要。粉煤灰,塑料废物和粘土是马来西亚常见的矿物质和残留物。在这项研究中,这些材料被充分利用为合成碳纳米管(CNT)的原材料。回收的聚丙烯先前用作食品容器,用作碳源。粉煤灰和粘土被探索为CNTS生长的潜在底物。在惰性环境中,在900°C的90分钟内将回收的聚丙烯热分解。在此过程中释放的碳原子被沉积在粉煤灰和粘土底物上,粉煤灰和粘土底物已浸入二代封溶液中,以提供CNTS生长的金属催化剂。使用扫描电子显微镜(SEM)和X射线衍射(XRD)对沉积产物进行表征。形态分析表明,粉煤灰和粘土都涂有纤维样结构,根据与XRD模式约26°的衍射峰确认为CNT。总而言之,粘土和粉煤灰证明了被用作CNT形成的底物的潜力。关键字:催化热分解;黏土; cnts;粉煤灰;再生聚丙烯1。简介
Abbreviations ADC: Antibody-drug conjugate ADCP: Antibody-dependent cell phagocytosis ADCC: Antibody-dependent cellular cytotoxicity AI: Aromatase inhibitor AKT: Protein kinase B ASCO-CAP: American Society of Clinical Oncology/College of American Pathologists CAR-T cells: Chimeric antigen receptor T cells cTNM: Clinical肿瘤淋巴结 - 纳斯症CDK:依赖细胞周期蛋白的激酶CCL5:趋化因子(C-C基序)配体5 CHI3L1:几丁质酶-3样蛋白1 CHRM1:毒蕈碱乙酰胆碱受体受体M1 DCIS M1 DCIS M1 DCIS M1 DCIS M1 DCIS:DDPCR:DDDPCR:DDDPCR:ddplet DIDIDER DIMDASE CRASSENT CONSE RIDENCASE COSSERVER DILDATE CRASSISS COMENCASS COMASE DRFFS: Early Breast Cancer Trialists' Collaborative Group EC: Epirubicin and cyclophosphamide EGFR: Epidermal growth factor receptor ER: Estrogen receptor ERBB2: Human epidermal growth factor receptor 2 (HER2) ERK: Extracellular signal-regulated kinase FDR: False discovery rate FZD: Frizzled receptors GNRH: Gonadotropin-releasing hormone GPCR: G蛋白偶联受体GPRC5D:G蛋白偶联受体C类C组5成员D HER1:人表皮生长因子受体1(EGFR)HER2:人类表皮生长因子受体2
大区域透明的透明导电膜(TCF)非常需要将来的电子设备。纳米碳TCF是最有前途的候选者之一,但它们的某些特性是相互限制的。这里是一种新型的碳纳米管网络重组(CNNR)策略,即,提出了相互驱动的CNNR(FD-CNNR)技术,以克服这种棘手的矛盾。FD-CNNR技术引入了单壁碳纳米管(SWNT)和CU - -O之间的相互作用。基于独特的FD-CNNR机制,设计和制造使用A3尺寸甚至仪表长度的大区块纤维重组碳纳米纤维(RNC-TCF),包括重新组织的SWNT(RSWNT)(RSWNT)和grapeene and graphene and graphene and rswnt(g-rswnt)(g-rswnt)hybridfifififififemms。可以实现强度,透射率和电导率的协同rnc-tcfs。G-RSWNT TCF在86%的透射率,FOM值为35和Young的模量≈45MPa时显示出低至69 sq-1的板电阻。高强度使RNC-TCF能够在水上独立,并轻松地转移到任何目标底物的情况下而不会污染。a4尺寸的浮动智能窗口是制造的,它表现出可控的调光和雾除。FD-CNNR技术可以扩展到大区域甚至大规模制造的TCF,并可以为TCFS和其他功能胶片的设计提供新的见解。
迄今为止,对碳纳米管的热运输物理学的理解仍然是一个开放的研究问题[1-10]。Experimentally, on the one hand, the thermal transport in single-wall carbon nanotubes (SWCNTs) is measured to be nondiffusive with divergence of thermal conductivity ( κ ) for tube lengths of up to 1 mm [ 6 , 8 ], as suggested by the Fermi, Pasta, Ulam (FPU), and Tsingou model [ 11 ], on the other hand, the κ is recently reported to converge for因此,管长的长度仅为10μm[12],突显了SWCNT的实验测量和热传输结果的解释[13]。基于声子散射选择规则的早期理论研究表明,长波长膨胀声音和扭曲 /旋转 /旋转 /旋转声音声子模式(统称为横向模式,以下是以下是横向模式)的非散射。这是通过使用Boltzmann转运方程(BTE)的迭代溶液获得的数值依赖性的声子特性的确定确定的,在这些迭代溶液中,在没有拼音子散射的情况下发现κ在差异[7]。但是,这些理论预测和数值依赖性的声子的性质是通过仅考虑三个子过程而获得的,并且尚不清楚当高级四阶四个频率过程中考虑到[7,9]时,长波长横向声子是否保持不变。基于分子动力学模拟的其他计算方法自然可以将声子非谐度包括到最高级。但是,由于几个然而,对于具有平衡分子动力学的SWCNT,这些模拟仍然是不合理的[5,15],并且直接的分子染料表明κ的长度依赖性至少为10μm[4,16]。随着计算资源的最新进展,现在有可能通过基于BTE的方法在声子传输属性的预测中包括高阶四声音程序[17-21]。
记录的版本:该预印本的一个版本于2024年4月3日在聚合物研究杂志上发表。请参阅https://doi.org/10.1007/s10965-024-03962-0。
摘要本研究研究了用多壁碳纳米管(MWCNT)加强热塑性聚氨酯(TPU)复合材料的机械性能,以在运动保护齿轮中应用。目标是(1)系统地评估MWCNT载荷水平和对齐对拉伸,压缩,硬度和影响特性的影响; (2)确定用于平衡增强的最佳MWCNT含量范围; (3)探索可扩展的制造方法。MWCNT/TPU复合材料具有0.5-4 wt%的负载,通过溶液混合和压缩成型预先折扣。机械测试显示出显着改善,有62 MPa拉伸强度(+19%),507 MPa模量(+23%)和1-4 wt%MWCNT的撞击能量吸收增加10%。MWCNT对齐进一步增强了性能,而高于2 wt%的负载显示一些封闭。微结构表征证明了良好的MWCNT分散和界面键合。结果表明,低MWCNT添加可以大大提高TPU的强度,刚度和撞击性。这表明开发了具有改善能量吸收和硬脑膜功能的头盔和垫子(例如头盔和垫子)的高级,轻巧的运动保护设备的巨大潜力。未来的工作将着重于针对特定齿轮应用的复合处理和设计。