摘要:研究了溶液法制备的银 (Ag) 纳米粒子修饰多壁碳纳米管 (MWNT) 填充硅胶复合膜的电性能。使用亚硫酰氯将原始 MWNT 氧化并转化为酰氯功能化的 MWNT,随后将其与胺基封端的聚二甲基硅氧烷 (APDMS) 发生反应。随后,用银纳米粒子修饰 APDMS 修饰的 MWNT,然后与聚二甲基硅氧烷溶液反应形成银修饰 MWNT 硅胶 (Ag-decorated MWNT-APDMS/Silicone) 复合材料。通过透射电子显微镜 (TEM) 观察了含有银修饰 MWNT 和 APDMS 修饰 MWNT 的硅胶复合材料的形貌差异,并通过四探针法测量了表面电导率。 Ag修饰的MWNT-APDMS/硅胶复合膜比MWNT/硅胶复合膜表现出更高的表面电导率,说明可以通过用APDMS和Ag纳米粒子对MWNT进行表面改性来改善Ag修饰的MWNT-APDMS/硅胶复合膜的电性能,从而拓展其应用领域。
摘要:由于多体效应和较强的电子 - 电子相互作用,准二维材料(例如碳纳米管)中电子带隙和激子结合能的测量很具有挑战性。与众所周知的电子带隙的散装半导体不同,低维半导体中的光学共振由激子主导,使其电子带隙更难测量。在这项工作中,我们使用非理想的P-N二极管测量了聚合物包裹的半导体单壁碳纳米管(S-SWCNTS)网络的电子带隙。我们表明,由于界面陷阱状态的存在,我们的S-SWCNT网络具有较短的少数载体寿命,从而使二极管非理想。我们使用来自这些非理想二极管的生成和重组泄漏电流测量具有不同直径的不同聚合物包裹的S-SWCNT的电子带隙和激子水平:ARC放电(〜1.55 nm),(7,5),(7,5)(0.83 Nm),(0.83 Nm)和(6,5),(6,5,76 nm)(0.76 nm)。我们的价值观与理论预测一致,从而深入了解S-SWCNT网络的基本属性。此处概述的技术展示了一种可靠的策略,可以应用于测量各种纳米级和量子限制的半导体的电子带隙和激子结合能,包括依赖于纳米线的最现代的纳米晶体管。
摘要:单壁碳纳米管(SWCNT)是1D纳米材料,显示近红外(NIR,> 800 nm)中的荧光。过去,在损害NIR发射时,探索了共价化学以使SWCNT功能化。然而,碳晶格中的某些SP 3缺陷(量子缺陷)已经出现,可以保留NIR荧光,甚至引入了新的红移发射峰。在这里,我们报告了使用轻驱动重氮化学物质引入的量子缺陷,这些缺陷是肽和蛋白质的锚点。我们表明,马来酰亚胺锚允许含有半胱氨酸的蛋白(例如GFP结合纳米机)结合。此外,FMOC保护的苯丙氨酸缺陷是可见的荧光团结合以创建多色SWCNT和直接在纳米管上的原位肽合成的起点。因此,这些量子缺陷是一个多功能平台,可量身定制纳米ubeqs光合物理特性及其表面化学。
摘要 对高能效信息处理的需求引发了基于材料的计算设备的新时代。其中,碳纳米管 (CNT) 与其他材料复合的随机网络 (RNW) 因其非凡的特性而受到广泛研究。然而,CNT 研究的异质性使得理解 CNT RNW 中材料内计算的必要特性变得颇具挑战性。在此,我们通过回顾 CNT 应用的进展来系统地处理该主题,从发现单个 CNT 传导到它们在神经形态和非常规 (储层) 计算中的最新应用。本综述概述了随机 CNT 网络及其复合物的非凡能力,用于执行非线性材料内计算任务以及可能取代当前能源效率低下的系统的分类任务。
摘要:单壁碳纳米管(SWCNTS)的捆绑显着破坏了它们的出色热和电性能。意识到稳定,均匀和表面活性剂 - 在溶剂和复合材料中的swcnt散发体长期以来一直被视为一个关键挑战。在这里,我们报告了含胺的芳香族和环己烷分子,这些分子是环氧固化的常见链扩展器(CES),可用于有效分散CNT。我们实现了CE溶剂中SWCNT的单管级分散,这是通过强性手性吸收和光致发光发射所证明的。SWCNT-CE分散体在环境条件下保持稳定数月。The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH − π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is con fi rmed by the negative Seebeck coe ffi cient of the CE-functionalized SWCNT fi lms, the red shift of the G band in the Raman spectra, and the NH X射线光电子光谱中的−π峰。CES的高配置显着改善了宏观CNT组件的电气和热传输。通过HNO 3的功能修改后,在80.8%的光透射率下,CE分散的SWCNT薄膜的板电阻达到161Ω平方-1。CES交联CNT和环氧分子,在CNT/环氧纳米复合材料中形成了声子传输的途径。基于CE的NH-π相互作用为SWCNT在方便而可扩展的过程中的有效和稳定分散提供了新的范式。与原始环氧树脂相比,CE -CNT-环氧复合材料的热导率增强了1850%,这是CNT/Epoxy纳米复合材料迄今据报道的最高增强。关键字:碳纳米管,分散,电荷转移,热界面材料,透明电极,功能化■简介
摘要最近,COVID-19大流行对世界各地的个人和社会产生了极大的影响。这项研究旨在描述瑞典中学(10-12岁)学生对细菌和病毒的理解,从而说明了大流行在学校和社会中的影响。数据是通过半结构化的各个视图和要求学生绘制图像的。使用了访谈成绩单的主题编码和学生注释图纸的内容分析。图纸上微生物的形态通常是“电晕”的,具有圆形和突出的部分。病毒被认为比细菌大,但有时也相似。细菌和病毒之间的相互关系用上等微生物表达。学生将微生物像细胞一样,从不将它们描绘成动物或具有拟人化特征。病毒被认为比细菌引起更严重的疾病。学生很少将特定病毒束缚在特定的传染病上,并经常将(病毒和疾病)称为“电晕”。然而,当它们确实建立连接时,病毒被认为会引起流感和covid-19,细菌会引起感冒和鼠疫。通常,这些结果表明,病毒在COVID-19的后果中在小学生的脑海中获得了微型iSM的更为明显的位置。
尽管癌症治疗取得了显著进展,但转移性疾病仍然是癌症相关死亡的主要原因。多壁碳纳米管 (MWCNT) 可以进入组织和细胞,并以仿生方式干扰细胞骨架纳米丝的动力学。这赋予它们与微管结合化疗(如 Taxol ® )相当的内在抗肿瘤作用。在本研究中,我们的重点是探索氧化 MWCNT 在选择性靶向血管内皮生长因子受体 (VEGFR) 方面的潜力。我们的目标是评估它们通过诱导对癌症和肿瘤微环境细胞的抗增殖、抗迁移和细胞毒性作用来抑制转移性生长的有效性。我们的研究结果表明,在静脉注射靶向可生物降解的 MWCNT 后,恶性黑色素瘤肺转移显著减少 80% 以上,动物整体福利显著改善。此外,这些纳米材料与传统化疗药物 Taxol ® 的结合使抗转移效果显著提高 90%。这些结果凸显了这种联合治疗方法对抗转移性疾病的巨大潜力,并且至关重要,因为转移每年导致近 60,000 人死亡。
通过定向冰模板法制备了基于具有各向异性结构的纤维素纳米晶体 (CNC) 和多壁碳纳米管 (MWCNT) 的轻质且机械强度高的混合泡沫。各向异性混合 CNC-MWCNT 泡沫表现出高度各向异性的热导率和方向相关的电磁干扰 (EMI) 屏蔽性,对于含有 22 wt% MWCNT 的混合泡沫,在 8 到 12 GHz 之间最大的 EMI 屏蔽效率 (EMI-SE) 为 41–48 dB。EMI-SE 主要由吸收 (SE A ) 决定,这对于微波吸收器应用非常重要。低径向热导率的建模强调了声子散射在异质 CNC-MWCNT 界面处的重要性,而轴向热导率主要由沿取向的棒状颗粒的固体传导决定。轻质 CNC-MWCNT 泡沫结合了各向异性热导率和 EMI 屏蔽效率,这种特性十分独特,可用于定向热传输和 EMI 屏蔽。
神经形态计算,又称受脑启发的计算,由于其构建模块能够同时记忆和处理数据,因此能耗较低。[2] 目前,人工神经网络在图像识别、[3] 音频识别、[4] 蛋白质结构揭示和材料发现等复杂的计算机器学习任务中展现出优势。[5] 这些机器学习任务依赖于大量数据和高速数据分析。因此,与传统的冯·诺依曼架构相比,模仿生物大脑基本要素——神经元和突触的受脑启发的计算架构正在成为复杂机器学习任务的计算解决方案。在实现神经形态计算的元器件中,可以作为光电神经形态计算机构建模块的光电子器件需要新型材料来制作电路级和纳米级的器件。碳纳米管 (CNT) 因其优异的机械和电学性能而常用于电子设备。[6] 与以单层或多层膜形式用于设备的二维石墨烯材料不同,一维 CNT 在电路级和纳米级设备应用中具有更好的潜力。作为一种具有高载流子迁移率的电气材料,CNT 用于构建场效应晶体管和计算机。[7] 尽管 CNT(包括多壁 CNT (MWCNT))具有优异的电学性能,但它们对光的响应较弱,不适合
被发现位于SWNT-BN的B原子上,SWNT-C上的C-C = C上。该观察结果强调了B原子在SWNT-BN中接受电子的能力以及SWNT-C中碳原子之间的π键的定位。此外,对于DWNT,特别是DWNT-BN,HOMO位于内壁(IW)和外壁(OW)的N原子上,而Lumo则位于IW和OW中的B原子上(见图2(E,F)。 相比之下,对于DWNT-C,HOMO位于IW的碳原子上,而Lumo位于OW的碳原子上(见图 2(g,h)。 这种区别强调了碳原子在IW中作为电子供体和碳原子作为电子受体的作用。 这些数字还展示了掺杂的DWNT-C变体的同性恋和Lumo mos。2(E,F)。相比之下,对于DWNT-C,HOMO位于IW的碳原子上,而Lumo位于OW的碳原子上(见图2(g,h)。这种区别强调了碳原子在IW中作为电子供体和碳原子作为电子受体的作用。这些数字还展示了掺杂的DWNT-C变体的同性恋和Lumo mos。