GWP EF AD E ············································ (1) 式中: E —— 每功能单位或单元过程的温室气体排放量,以二氧化碳当量(CO 2 e)表示; AD —— 温室气体活动数据,单位根据具体排放源确定; EF —— 温室气体排放因子,单位与活动数据的单位相匹配; GWP —— 全球变暖潜势,以政府间气候变化专门委员会(IPCC)最新发布数据为准。
抽象的内在或获得化学疗法的抗性是癌症治疗的主要障碍。抗药性的关键机制之一是药物外转运蛋白P-糖蛋白(PGP)的过表达。PGP过表达使大量机械无关的化学疗法无效。靶向PGP抑制直接克服耐药性,尽管在概念上和机械上有吸引力,但并未转化为诊所,部分原因是PGP在许多健康组织中也具有关键的保护功能。最近发现,与癌症中pH调节相关的酶XII(Ca XII)在抗药性癌细胞中与PGP共同表达并与PGP共同表达。ca xii也被缺氧上调,这是另一种有助于耐药性的微环境因子。在这里,我们回顾了表明对CA XII的调节的发现,可能会提供一种有希望的新方法来克服耐药性和治疗障碍对固体癌症的长期障碍。本综述涵盖了小分子和抗体的CA XII抑制剂的使用,并结合了PGP底物的化学治疗剂。这种组合疗法方法恢复了化学疗法在抗性细胞中的功效,并提供了一个潜在的新治疗窗口,以重新检查PGP作为一种安全,有效且新颖的抗癌策略。
摘要:U-104是一种有效的碳酸酐酶(CAS)的抑制剂,已显示为几种人类癌症类型的潜在抗肿瘤药物。但是,U-104的下游机制及其在舌鳞状细胞癌(TSCC)中的功能尚不清楚。既没有证实U-104的抗肿瘤效应是否取决于Ca 9和Ca 12。在这项工作中,我们发现了通过RNA测序调节的差异表达的基因(DEG)和电势细胞过程。与细胞死亡相关,细胞增殖,迁移和对药物细胞过程的反应是最高的GO(基因本体学)过程,这与观察到的TSCC 15细胞中U-104治疗的生物学作用一致。此外,Ca 9或Ca 12的敲低(KD)完全消除了对细胞迁移,细胞死亡和临界DEG表达的影响。全部,我们的研究提出了在转录组水平上U-104的调节机制,并证明了u-104的抗肿瘤功能取决于TSCC中Ca 9和Ca 12。我们的发现扩展了有关U-104抗肿瘤功能的当前知识,并为TSCC提供了潜在的治疗选择。关键字:碳酸酐酶抑制剂; U-104; Ca 9; Ca 12;舌鳞状细胞癌CLC编号:R 739。86文档代码:
摘要:细菌在人类和动物中产生的抗生素治疗的耐药性发生在微生物抵抗临床批准的抗生素治疗时。必须采取行动,以阻止抗生素抗性的进一步发展和后续超级细菌的出现。用药重新利用/重新定位是一种策略,可以帮助发现新的抗生素,因为它加快了药物发育阶段。在其中,Zn 2+离子粘合剂(例如磺酰胺及其生物膜体)被认为是获得新型抗菌物的最有前途的化合物,从而避免了抗生素耐药性。磺酰胺及其生物同体具有数十年来众所周知的药物样性质,并且是开发新的药理学家族的合适铅化合物,用于抑制碳酸酐酶(CAS)。cas是甲基酶的超家族,可催化CO 2水合与HCO 3--和H +的可逆反应,在大多数细菌中存在于多种遗传家族中(α-,β-,γ-和i -classes)中的大多数细菌。这些酶(充当CO 2换能器)是有前途的药物靶标,因为它们的活性影响了宿主中微生物增殖,生物合成途径和病原体持久性。在其自然或稍微修饰的支架中,磺酰胺/硫酸盐/磺胺剂在感染了抗生素耐药菌菌株的小鼠模型中抑制了CAS的体外和体内,从而确保了它们在相反的细菌抗生素耐药性中的作用。
摘要:肿瘤微环境对于癌细胞的生长至关重要,引发了特定的生化和生理变化,这经常影响抗癌疗法的结果。许多这些现象背后的生化基本原理属于转录因子(例如低氧诱导因子1和2)的激活(HIF-1/2)。反过来,HIF途径激活了许多基因,包括参与葡萄糖代谢,血管生成和pH调节的基因。几种碳酸酐酶(CA,EC 4.2.1.1)等亚型,例如Ca IX和XII,积极参与这些过程,并被验证为抗肿瘤/抗转移性药物靶标。在这里,我们回顾了CA抑制剂(CAI)的领域,该领域有选择地抑制与癌症相关的CA同工型。特别的重点是识别铅化合物和各种抑制剂类别,以及测量Ca抑制作用/脱靶效应。此外,详细介绍了导致SLC-0111鉴定的临床前数据,这是IB/II期临床试验中用于治疗低氧,晚期实体瘤的磺胺胺。
推荐引用 推荐引用 Li, Longji,“模拟碳酸酐酶的金属有机骨架的合成及催化性能”(2021 年)。Mahurin 荣誉学院顶点体验/论文项目。论文 924。https://digitalcommons.wku.edu/stu_hon_theses/924
摘要 由于抗生素耐药性的增加,霍乱弧菌在低收入国家造成了危及生命的感染。人们研究了创新的药理学靶点,霍乱弧菌编码的碳酸酐酶 (CAs,EC:4.2.1.1) (Vch CAs) 成为一个有价值的选择。最近,我们开发了一个大型对苯和间苯磺酰胺库,其特征是具有不同柔韧性程度的部分作为 CAs 抑制剂。基于停止流的酶促测定表明该库对 Vch a CA 有强烈的抑制作用,而对其他同工型的亲和力较低。特别是环脲 9c 对 Vch a CA 的抑制作用达到纳摩尔水平(KI ¼ 4.7 nM),并且对人类同工酶具有高选择性(SI 90)。计算研究揭示了部分柔韧性对抑制活性和同工型选择性的影响,并允许进行准确的 SAR。然而,尽管 Vch CA 与细菌的毒力有关而非其存活率,我们评估了此类化合物的抗菌活性,结果没有直接活性。
双靶点抑制剂策略是一种不断发展的方法,通过解决复杂疾病的多因素性质,具有治疗复杂疾病的巨大潜力。它可以增强治疗效果,减少副作用,避免出现耐药性,特别是在癌症、炎症和神经系统疾病等多种途径导致疾病进展的疾病中。确定适合双抑制剂方法的靶点需要深入了解疾病生物学、关键途径知识以及选择互补或协同靶点。人类碳酸酐酶 (hCA) 已被公认为这种治疗方法的合适药物靶点。这些酶在维持各种组织和器官的 pH 平衡、离子转运和液体调节方面发挥着关键作用,其失调与多种人类病理有关。因此,抑制 hCA 并结合调节第二个分子靶点活性的可能性,代表了开发更有效药物的有希望的方法。在这篇小型评论中,我们旨在概述与开发使用 hCA 抑制剂作为双靶点化合物治疗复杂疾病的新型疗法相关的最重要的结构结果。
储存和稳定性: 尿嘧啶 DNA 糖基酶采用干冰或蓝冰运输。到货后储存于 -20°C 下,以获得最佳稳定性。 有效期: 在外包装盒标签上的有效期内,在推荐条件下储存并正确处理时,试剂盒可保持完整活性。 单位定义: 一个单位是指每分钟催化含尿嘧啶双链 DNA 释放 60 pmol 尿嘧啶的酶量。通过 37°C 下 30 分钟内在含有 0.2 mg DNA ( 10 4 -10 5 cpm/mg )的 50 mL 反应预混液中释放 [ 3 H]- 脲嘧啶来测量活性。 安全预防措施: 处理试剂前请阅读并理解 SDS (安全数据表)。首次发货时提供 SDS 的纸质版文件,此后可应要求提 供。 质量控制: Meridian 遵守 ISO 13485 质量管理体系运行。尿嘧啶 DNA 糖基酶在放行前经过广泛的活性测试。
Anzalone, AV、Koblan, LW 和 Liu, DR (2020)。使用 CRISPR–Cas 核酸酶、碱基编辑器、转座酶和主要编辑器进行基因组编辑。《自然生物技术》,1-21。