查尔姆斯理工大学摘要:尽管激光粉末床熔合 (LB-PBF) 作为一种增材制造技术具有突出地位,但获准用于该工艺的合金数量仍然有限。在传统制造中,铁合金是最常见的合金组,主要由普通碳钢和低合金钢组成。然而,在 LB-PBF 中,铁合金的生产仅限于少数奥氏体/沉淀硬化不锈钢和工具钢。普通碳钢和低合金钢的缺乏源于碳在加工过程中的负面影响,这会促进成品材料内开裂缺陷的形成。因此,为了扩大 LB-PBF 的机会,必须了解如何加工这些含碳铁合金。本研究探讨了各种普通碳钢(0.06 至 1.1 wt.% C)和低合金钢(4130、4140、4340 和 8620)的 LB-PBF 加工性能和微观结构。微观结构分析发现,成品试样由回火马氏体组成,这种回火马氏体是由于 LB-PBF 过程中的初始快速冷却和随后的固有热处理而形成的。此外,在 C 含量≥0.75 wt.% 的合金中观察到残余奥氏体的存在,这是由于马氏体转变温度降低,导致冷却至室温时部分奥氏体未转变。就缺陷而言,成品试样内的孔隙率可能与所选的体积能量密度 (VED) 和合金的碳含量有关。在低 VED 下,试样含有与未熔合孔隙有关的大而不规则的孔隙,而在高 VED 下,试样含有与小孔隙有关的圆形中等大小的孔隙。就碳含量而言,发现增加碳量可减少低 VED 下的未熔合孔隙的数量,而增加高 VED 下的小孔隙的数量。未熔合孔隙的减少是由于熔池的润湿性和流动性改善,而小孔隙的增加是由于碳含量较高导致熔池深度增加。除了孔隙之外,在一些普通碳钢和低合金钢中还观察到冷裂纹,形成于硬度超过某些阈值的试样中:Fe-C 合金为 ≥425 HV,4140 合金为 >460 HV,4340 合金为 >500 HV。增加 VED 或激光功率会降低样品硬度,因为这两个因素都会增强 LB-PBF 的固有热处理。这意味着如果使用足够大的 VED 或激光功率,就可以避免(某些合金中的)开裂。碳含量还会影响成品样品的硬度,从而影响开裂敏感性,这一发现解释了为什么低碳合金(<0.43 wt.% C)在任何测试的 VED 下都不会出现开裂,而高碳合金(≥0.75 wt.% C)会在任何测试的 VED 下出现开裂。% C) 在每次测试的 VED 中都出现开裂。利用这些发现,建立了加工窗口,无需预热构建板即可生产出高密度 (>99.8%)、无缺陷的普通碳钢和低合金钢样品。
这项研究调查了由Tectona Grandis制成的天然染料提取物和银纳米颗粒的效果,可以防止在酸性环境中腐蚀碳钢。这些纳米颗粒在420纳米的波长下显示为深褐色,并吸收了最强的光。分析证实了官能团的存在:O-H,C = O,C = C和纳米颗粒中的N-Hb。用扫描电子显微镜检查显示纳米颗粒主要是球形或椭圆形。证实了银的存在,并使用XRD分析分析了其晶体结构。使用氮吸附技术进一步测试表明纳米颗粒是介孔的。染料和纳米颗粒都抑制了酸性溶液中低碳钢的腐蚀。较高的抑制剂浓度可提供更大的保护,以防止腐蚀。但是,这种保护在较高的温度下削弱了。抑制剂的存在提高了腐蚀所需的活化能。腐蚀过程是一个吸热过程。此外,熵变化表明在抑制期间在金属表面上的排列更加有序。研究表明,纳米颗粒是由提取物形成的。纳米颗粒在暴露于抑制剂后对钢表面的SEM/EDX研究在抑制腐蚀方面的表现优于Die提取物。
如今,研究人员有兴趣探索用自然来源衍生的绿色有机物质代替有害无机化学物质的可能性。 这项研究着重于使用当地芒果果皮的植物提取物来获取绿色腐蚀抑制剂对低碳钢的潜力。 使用溶剂提取技术提取了Harumanis芒果果皮剩余的剩余,并通过傅立叶变换Infra-Red(FTIR)和UV可见光谱法表征化学化合物。 分析表明,Harumanis Mango Peel(HMPE)的粗提取物包含用于腐蚀抑制特性的活性官能团,例如-OH,-OCOOH,-C = O和芳环结构。 也检测到了Mangiferin和其他黄酮醇的存在,可能是酸的五十五。 通过常规腐蚀试验研究了HMPE作为碳钢腐蚀抑制剂的效率。 在不同的温度下,在30、40、50和60°C的不同温度下进行,有或不加入50至350 ppm的HMPE抑制剂在1 m盐酸盐中,HCl。 结果表明,随着Harumanis芒果果皮的浓度增加,酸性培养基中低碳钢的腐蚀抑制效率会增加。 最大抑制效率为85%如今,研究人员有兴趣探索用自然来源衍生的绿色有机物质代替有害无机化学物质的可能性。这项研究着重于使用当地芒果果皮的植物提取物来获取绿色腐蚀抑制剂对低碳钢的潜力。使用溶剂提取技术提取了Harumanis芒果果皮剩余的剩余,并通过傅立叶变换Infra-Red(FTIR)和UV可见光谱法表征化学化合物。分析表明,Harumanis Mango Peel(HMPE)的粗提取物包含用于腐蚀抑制特性的活性官能团,例如-OH,-OCOOH,-C = O和芳环结构。也检测到了Mangiferin和其他黄酮醇的存在,可能是酸的五十五。通过常规腐蚀试验研究了HMPE作为碳钢腐蚀抑制剂的效率。在不同的温度下,在30、40、50和60°C的不同温度下进行,有或不加入50至350 ppm的HMPE抑制剂在1 m盐酸盐中,HCl。结果表明,随着Harumanis芒果果皮的浓度增加,酸性培养基中低碳钢的腐蚀抑制效率会增加。最大抑制效率为85%
在这项工作中,进行电化学测试以测量在存在离子液体(ILS)1-乙基-3-甲基咪唑乙酸酯((EMIM) +(AC) - 1-乙基-3-乙基-3-甲基-3-甲基咪唑烷基咪唑硫酸盐(BR Bromomide)的情况下,在碳钢自由溶解过程中测量氢渗透率(ILS)。 1-叔丁基-3-甲基咪唑唑化三氟甲氟化[(BMIM) +(BF 4) - ]在5.4 mol L -1 HCl水溶液中。还评估了还评估了5-羟基-2-硝基甲基 - 二苯胺(HPY)和商业腐蚀抑制剂(CCI)的渗透抑制效率(IEP(%))。在IL中,(BMIM) +(BF 4) - 化合物呈现出最高的腐蚀和氢渗透抑制效率,值分别为23%和30%。(EMIM) +(br)和(EMIM) +(AC) - 化合物无效抵抗腐蚀,但它们的IEP分别为15.8%和23%。HPY化合物在预防腐蚀方面表现出61%的有效性,而在计算机评估中则表明毒性没有毒性。但是,HPY化合物和CCI化合物在腌制过程中均未抑制氢进入碳钢。
抽象确定染色体抑制染色体的腐蚀抑制,以不同的浓度为1M HCl和0.5m h 2 So 4。结果表明,碳钢的腐蚀速率随温度的升高而增加,并且随着提取物浓度的增加而降低。即使在较高浓度下,植物提取物的抑制作用在0.5M H 2中比1M HCl中更明显。观察到的温度和抑制效率趋势(1.e%)是因为随着浓度的增加,提取物的分子在碳钢表面吸收。关键字:抑制,腐蚀,Chromolaena odorata,天然产品。引言腐蚀是通过不必要的化学物质或电化学攻击的固体金属材料的破坏或破坏和偶然的损失,在其表面停滞不前。在其他情况下,为了最大程度地减少腐蚀,通常在流冷却系统中使用抑制剂。,有机,无机或两者的组合可用于抑制金属离子上的化学吸附和物理吸附机制,并在金属表面上形成屏障类型[1,2]在水中培养基中溶解的屏障类型的沉淀物是许多报道的感兴趣的。腐蚀涉及金属或合金及其环境之间的反应,热力学和动力学观点的腐蚀理论涵盖了盐,液体金属和气体中的水化学,扩散和溶解的原理。为防止金属腐蚀,一些
对产生相应的(z)-n' - (((1H-indol-3- yl)甲基甲基甲基甲基甲基)的相应的(z)-n' - (CH)的反应。 CH和CHN抑制剂的抑制效率分别分别减轻体重减轻,而CH和CHN抑制剂的抑制效率分别为约86.9%,CH和CHN抑制剂的抑制效率分别为降低的抑制剂,而CHN抑制剂的极化耐极能力高于CHN抑制剂的较高限制,而CHN抑制剂的浓度降低了,则在较大的情况下降低了COROSIT的差异。对于CH和CHN抑制剂,K ADS分别为11.4824 m -1和6.8667 m -1。吸附的自由能(∆ g o ads。)为-12.1685 kJ mol -1,CHN抑制剂为-14.7326 kJ mol -1。这表明CH和CHN抑制剂都被物理吸附到低碳钢表面上,而CHN则优先吸附。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。
摘要 - 材料通过称为腐蚀的过程自然衰减,在该过程中它们与周围环境反应。可以通过施加多种腐蚀抑制剂来防止低碳钢在盐酸(HCL)中腐蚀。在这项工作中,新型的单核锰配位络合物[MN(HBPZ)2(NCS)2]显示出有希望的特性,使其适合预防腐蚀应用。在本实验中,使用不同的实验方法来评估其抑制潜力。例如,体重减轻(WL)显示腐蚀速率较高的浓度下降了96%。eis是证据表明浓度效应增加了R CT并减少C DL。此外,极化检查表明C3是一种混合型抑制剂。另外,还使用了量子机械和统计方法,还确定了温度的效果。此外,还使用并计算了热力学方程。吸附遵循Langmuir等温模型,模拟方法证实了复合物的自发吸附性质,从而改善了表面表征的结果。
执行摘要 目前,商业化的聚光太阳能发电 (CSP) 电厂与普通光伏 (PV) 电厂的区别在于,它们可以储存足够的热能,以便在太阳下山后数小时内发电。CSP 电厂将这种热能以硝酸盐的显热形式储存在大型金属储罐中。工作温度约为 565°C 的热罐需要使用不锈钢 AISI 347H (SS347H) 作为结构材料,而冷罐则可用碳钢制成。目前,欧洲和美国的几家槽式 CSP 电厂正在使用双罐硝酸盐热能存储 (TES),工作温度最高可达 390°C。至少有三家商业运营的塔式 CSP 电厂(西班牙的 Gemasolar、美国内华达州的 Crescent Dunes 和摩洛哥的 Noor III)采用相同的方法,将硝酸盐储存在高达 580°C 的温度下。由于 SS347H 比碳钢贵很多倍,是当今 CSP 电厂成本中的一个重要组成部分,CSP 开发商需要通过降低电厂每个系统的成本来缩小与光伏太阳能电厂的成本差距。重新设计 TES 储罐是降低成本的一个机会。
腐蚀是普遍的挑战。这项全面的研究深入研究了2-甲基-4-丙基-1,3-氧化氢(MPO)作为暴露于盐酸(HCL)溶液的碳钢的腐蚀抑制剂的有效性。调查采用减肥技术来评估不同持续时间(从1到48小时)和浓度(0.1至1 mm)的抑制剂的性能。在0.5 mm的浓度下,抑制剂表现出令人印象深刻的抑制效率,在5小时的暴露期间,在303 K时的87.6%到333 K时的92.9%。此外,在303、313、323和333 K的温度下检查温度对腐蚀抑制过程的影响,显示出很大的抑制效率。使用密度功能理论(DFT)方法的量子化学计算阐明了MPO与金属表面之间的分子相互作用。值得注意的是,EHOMO(最高占据分子轨道能),Elumo(最低的无占分子轨道能量),EGAP(能量间隙),总硬度(η),电负性(χ)和电子分数转变型原子(ΔN)揭示了有价值的Insights corrosions cororosion and cororosion cororosion and cororosion corrosion。结果强调了MPO作为HCL环境中低碳钢的有效腐蚀抑制剂的潜力,为工业环境中更有效的预防腐蚀策略奠定了基础。
对于快速,方便的操作以及原油和天然气的大量运输量,管道是对石油和天然气持续需求的经济关键答案[1]。管道通常是由于其良好的机械性能和低成本而从碳钢中产生的[2,3]。然而,众所周知,碳钢在侵略性环境中遭受了高腐蚀风险,这使得内管道腐蚀成为一个具有挑战性的问题,并可能导致巨大的经济损失和安全问题[1,4]。在可用的缓解方法中,使用腐蚀抑制剂是减慢内部管道腐蚀速率的最具成本效益和方便的方法[5]。有机抑制剂通过形成一个吸附的层来保护金属底物,该层可以阻碍水分子和其他腐蚀性物种进入表面的通道[6]。抑制有效性取决于抑制剂 /表面系统形成粘附和连续层的能力。极性功能性头组和抑制剂分子尾巴之间的分子间相互作用起着至关重要的作用[7,8]。基于表面和抑制剂之间的相互作用强度,抑制剂化合物已被描述为被物质化或化学吸附[9]。物理吸附描述了带电底物/抑制剂分子之间的弱电静态相互作用,为