对孤立系统中热化及其破坏的研究使人们对非平衡量子态及其对初始条件的依赖性有了更深入的了解。初始条件的作用因量子多体疤痕的存在而突出,量子多体疤痕是一种特殊的非热态,具有潜在的有效超自旋结构,嵌入在原本混乱的多体谱中。自旋海森堡和 XXZ 模型及其在一维和更高维度中的变体已被证明具有精确的量子多体疤痕,表现出可在合成和凝聚态系统中实现的自旋螺旋态的完美复兴。受这些进展的启发,我们提出了实验上可访问的、局部的、时间相关的协议来探索空间热化概况,并强调系统的不同部分如何热化并影响超自旋的命运。我们根据驱动自旋与其余自旋之间的相互作用,确定了铁磁(X 极化)初始状态的不同参数范围,包括局部非热行为,其中驱动自旋有效解耦,充当“冷”点,同时有助于加热其他自旋。我们还确定了超自旋在长时间内保持对局部驱动弹性的参数范围。我们开发了一个实空间和 Floquet 空间图来解释我们的数值观察,并做出了可以在各种实验装置中测试的预测。
磁性 skyrmion 是具有类粒子特性的拓扑非平凡自旋配置。早期研究主要集中于拓扑电荷 Q = − 1 的特定类型的 skyrmion。然而,二维手性磁体的理论分析已经预测了 skyrmion 袋的存在——具有任意正或负拓扑电荷的孤子。虽然这种自旋结构是亚稳态,但最近的实验观察证实了孤立 skyrmion 袋在有限范围的施加磁场中的稳定性。这里利用 Lorentz 透射电子显微镜展示了 B20 型 FeGe 薄板中 skyrmion 袋的非凡稳定性。特别是,结果表明,嵌入 skyrmion 晶格中的 skyrmion 袋即使在零或反转的外部磁场中也能保持稳定。提供了一种用于成核此类嵌入式 skyrmion 袋的强大协议。结果与微磁模拟完全吻合,并建立了立方手性磁体薄板作为探索宽谱拓扑磁孤子的有力平台。
磁性材料中的自旋波具有超低能量耗散和长相干长度,是未来计算技术的有前途的信息载体。反铁磁体是强有力的候选材料,部分原因是它们对外部场和较大群速度的稳定性。多铁性反铁磁体,例如 BiFeO 3 (BFO),具有源于磁电耦合的额外自由度,允许通过电场控制磁结构,从而控制自旋波。不幸的是,由于磁结构的复杂性,BFO 中的自旋波传播尚不明确。在这项工作中,在外延工程、电可调的 1D 磁振子晶体中探索了长距离自旋传输。在平行于和垂直于 1D 晶体轴的自旋传输中发现了显著的各向异性。多尺度理论和模拟表明,这种优先磁振子传导是由其色散中的群体不平衡以及各向异性结构散射共同产生的。这项工作为反铁磁体中的电可重构磁子晶体提供了途径。
有效的磁化控制是磁学和自旋电子学的核心问题1-8。特别是,对于具有非常规功能的自旋电子器件,对范德华 (vdW) 磁体中磁态的多功能操控的需求日益增加9-13。已经实现了通过自旋扭矩对 vdW 磁体进行磁化切换的电控制,但在没有外部磁场的情况下铁磁状态到反铁磁状态之间的电流诱导相变尚未得到证明12,14,15。在这里,我们报道了电流诱导的 vdW 铁磁体 Fe 5 GeTe 2 中的磁相变,从而产生了巨磁电阻。基于磁输运测量和相关理论分析,我们证明该转变是通过平面电流诱导的跨 vdW 间隙电压差在各层中依次发生的。 34 Fe 5 GeTe 2 中磁相的电流可调性为磁性能的电控制开辟了一条道路,扩展了我们将 vdW 磁体用于各种自旋电子器件应用的能力。36
鉴于拓扑自旋纹理在信息存储技术中的潜在应用,其生成和控制是现代自旋电子学最令人兴奋的挑战之一。特别令人感兴趣的是磁绝缘体,由于其低阻尼、无焦耳加热和减少的耗散,可以提供节能的自旋纹理平台。本文证明了样品厚度、外部磁场和光激发之间的相互作用可以产生大量的自旋纹理,以及它们在绝缘 CrBr 3 范德华 (vdW) 铁磁体中的共存。使用高分辨率磁力显微镜和大规模微磁模拟方法,证明了 T-B 相图中存在一个大区域,其中存在不同的条纹畴、skyrmion 晶体和磁畴,并且可以通过相位切换机制进行内在选择或相互转换。洛伦兹透射电子显微镜揭示了磁性纹理的混合手性,在给定条件下属于布洛赫类型,但可以通过厚度工程进一步操纵为尼尔类型或混合类型。可以通过标准光致发光光学探针进一步检查不同磁性物体之间的拓扑相变,该探针通过圆偏振分辨,表明存在激子-skyrmion耦合机制。研究结果表明,vdW磁绝缘体是一种有前途的材料框架,可用于操纵和生成与原子级设备集成相关的高度有序的skyrmion晶格。
软体机器人领域发展迅速,其目标是创造出机械柔顺性更强、功能更全、与人类交互更安全的机器人 [1]。为了实现这一目标,研究人员开发出了与传统机器人部件类似的柔性部件,用于传感 [2]、[3]、驱动 [4] 和计算 [5]。一部分软体机器人利用电磁力实现驱动 [6]–[8]。许多研究人员将磁性粒子嵌入有机硅弹性体中,制成可通过外部磁场 [9]–[12] 或局部磁场 [13]、[14] 驱动的软磁复合材料。Kohls 等人设计了一种带有液态金属线圈和软磁复合材料的软电磁铁 [15],然后将这项工作扩展为生产全软电动机 [16]。Li 等人引入了磁性油灰作为软体机器人的可重新编程、自修复建筑材料 [17]。为了替代耗电的电磁铁,机器人专家使用了电永磁体 [18]。电永磁体由两个磁化强度相同但矫顽力不同的永磁体组成 [19]。导电线圈缠绕在磁体周围,使得短暂的电流脉冲可以产生足够强的磁场来反转低矫顽力磁体的磁化,但不足以影响高矫顽力磁体。因此,通过选择性地反转低矫顽力磁体的极性,可以打开(非零净磁化)或关闭(中性净磁化)。与持续吸取电流的电磁铁相比,电永磁体仅在切换状态时短暂消耗能量;永磁体即使在开启状态下也不会消耗电能 [20]。
在介电绝缘的超导磁体中需要聚合物[1],以及浸渍由NB 3 SN等脆性导体制成的磁铁线圈[2]。在未来的粒子加速器中,例如未来的圆形对撞机(FCC)项目[3,4],磁体将暴露于日益高的辐射剂量。为例,HL-LHC [5]内三重线圈中的预测峰剂量为30 mgy [6]。环氧树脂是具有良好的介电和机械支撑物的热固性聚合物,这些聚合物通常用于磁铁的大管浸没,用于电动机和发电机的线圈绕组,以及作为纤维增压组合的基质材料。这种环氧树脂的辐射损伤已被广泛研究[7]。以前,我们已经描述了不同环氧树脂系统在环境空气中辐射期间潜在用于超导磁体的老化[8]。由于超导磁体中的聚合物在没有氧气的情况下在低温温度下被照射,因此在本研究中,我们研究了辐射温度和大气的影响。为此,我们在三种不同的环境中辐射了相同的环氧树脂:在20℃,在环境空气或惰性气体中,并浸入4.2 K的液态氦气中。为了评估衰老过程并确定衰老率,我们采用动态机械分析(DMA)。DMA存储和损耗模量演变揭示了交联和链分裂对玻璃过渡温度(T G)的竞争影响以及大分子交联之间的分子量。辐照环境,尤其是辐射温度,可能会大大影响辐射引起的环氧树脂衰老。
摘要 分子纳米磁体 (MNM) 是含有相互作用自旋的分子,一直是量子力学的游乐场。它们的特点是有许多可访问的低能级,可用于存储和处理量子信息。这自然开启了将它们用作量子比特的可能性,从而扩大了基于量子比特架构的量子逻辑工具。这些额外的自由度最近促使人们提出在单个分子中编码带有嵌入式量子纠错 (QEC) 的量子比特。QEC 是量子计算的圣杯,这种量子比特方法可以规避标准多量子比特代码中典型的物理量子比特的大量开销。分子方法的另一个重要优势是在制备复杂的超分子结构时实现了极高的控制程度,其中各个量子比特相互连接,同时保持其各自的属性和相干性。这对于构建量子模拟器(能够模拟其他量子对象动态的可控系统)尤其重要。使用 MNM 进行量子信息处理是一个快速发展的领域,但仍需要通过实验进行充分探索。需要解决的关键问题与扩大量子位/量子比特的数量及其各自的寻址有关。人们正在深入探索几种有希望的可能性,从使用单分子晶体管或超导设备到光学读出技术。此外,化学领域的新工具也可能随时可用,例如手性诱导的自旋选择性。在本文中,我们将回顾这一跨学科研究领域的现状,讨论尚未解决的挑战和设想的解决方案,这些方案最终可能会释放分子自旋在量子技术中的巨大潜力。
摘要 分子纳米磁体 (MNM) 是含有相互作用自旋的分子,一直是量子力学的游乐场。它们的特点是有许多可访问的低能级,可用于存储和处理量子信息。这自然开启了将它们用作量子比特的可能性,从而扩大了基于量子比特架构的量子逻辑工具。这些额外的自由度最近促使人们提出在单个分子中编码带有嵌入式量子纠错 (QEC) 的量子比特。QEC 是量子计算的圣杯,这种量子比特方法可以规避标准多量子比特代码中典型的物理量子比特的大量开销。分子方法的另一个重要优势是在制备复杂的超分子结构时实现了极高的控制程度,其中各个量子比特相互连接,同时保持其各自的属性和相干性。这对于构建量子模拟器(能够模拟其他量子对象动态的可控系统)尤其重要。使用 MNM 进行量子信息处理是一个快速发展的领域,仍然需要通过实验进行充分探索。要解决的关键问题与扩大量子位/量子比特的数量及其各自的寻址有关。正在深入探索几种有希望的可能性,从使用单分子晶体管或超导设备到光学读出技术。此外,化学领域的新工具也可能随时可用,例如手性诱导的自旋选择性。在本文中,我们将回顾这一跨学科研究领域的现状,讨论尚未解决的挑战和设想的解决方案,这些最终可能会释放分子自旋在量子技术中的巨大潜力。
摘要 分子纳米磁体 (MNM) 是含有相互作用自旋的分子,一直是量子力学的游乐场。它们的特点是有许多可访问的低能级,可用于存储和处理量子信息。这自然开启了将它们用作量子比特的可能性,从而扩大了基于量子比特架构的量子逻辑工具。这些额外的自由度最近促使人们提出在单个分子中编码带有嵌入式量子纠错 (QEC) 的量子比特。QEC 是量子计算的圣杯,这种量子比特方法可以规避标准多量子比特代码中典型的物理量子比特的大量开销。分子方法的另一个重要优势是在制备复杂的超分子结构时实现了极高的控制程度,其中各个量子比特相互连接,同时保持其各自的属性和相干性。这对于构建量子模拟器(能够模拟其他量子对象动态的可控系统)尤其重要。使用 MNM 进行量子信息处理是一个快速发展的领域,但仍需要通过实验进行充分探索。需要解决的关键问题与扩大量子位/量子比特的数量及其各自的寻址有关。人们正在深入探索几种有希望的可能性,从使用单分子晶体管或超导设备到光学读出技术。此外,化学领域的新工具也可能随时可用,例如手性诱导的自旋选择性。在本文中,我们将回顾这一跨学科研究领域的现状,讨论尚未解决的挑战和设想的解决方案,这些方案最终可能会释放分子自旋在量子技术中的巨大潜力。