●涵盖了多种用于光学应用的晶体:激光和非线性光学晶体,磁光晶体,闪烁体/剂量计晶体,宽带隙半导体,压电和铁电晶体等等等等。●我们当前的主要研究目标是:用于高亮度照明设备的单晶磷光器。用于激光机械的光学隔离器的法拉迪旋转器。用于高温使用的压电晶体,例如燃烧压力传感器。氧化包胶作为新型宽带隙半导体。用于IR光学应用的Chalcogenide●积极促进与大学,国立研究所和行业的合作,并积极追求国际合作,以促进新的观点和原始思想。
完成本模块后,学生将能够: - 理解原子量子存储器并比较各种存储方案,包括光腔分析。 - 描述、用统计描述计算并参考单光子实验在实验室中演示光学检测方面。 - 组装和实现 Rb 的磁光阱并讨论其在量子现象中的应用。 - 总结光量子信息中的连续和离散变量编码。 - 描述量子密钥分发并计算光量子信息的贝尔不等式协议。 - 将超导电路描述为量子比特,量子点描述为量子比特,并将它们与原子进行对比。 - 解释宏观量子振荡器的物理学。
集成光子学正在推动紧凑型传感 [1]、计量 [2] 和量子计算 [3] 的新技术。许多应用需要将光发送到芯片外,例如,用于询问隔离的原子介质 [4–7],这得益于集成光子学的小型化和可制造性。此类设计需要能够产生具有不同波长、偏振和光束几何形状的自由空间光束的模式耦合器。例如,投射光学 [8] 和磁光阱 (MOT) [9,10] 可能需要具有大数值孔径或大光束腰的光束。可以使用片上外耦合器与平面超表面相结合来修改光束相位分布和偏振状态,从而实现精确的光束控制 [11]。此类平台能够集成多种颜色、分布和偏振的光束,从而在紧凑的三维空间内实现无与伦比的光场控制。
基于线性射频阱中捕获离子的量子比特由于其高保真度的操作、全对全连接和局部控制程度而成为量子计算的成功平台。原则上,可以限制在单个 1D 寄存器中的基于离子的量子比特数量没有根本限制。然而,在实践中,长捕获离子晶体存在两个主要问题,这些问题源于其运动模式在扩大时会“软化”:离子运动的高加热率和密集的运动谱;两者都会阻碍高保真量子比特操作的性能。在这里,我们提出了一种使用大离子晶体的量子计算的整体、可扩展架构来克服这些问题。我们的方法依赖于动态操作的光势,它可以瞬间将离子晶体分割成可管理大小的单元。我们表明这些单元表现为几乎独立的量子寄存器,允许所有单元上都有并行纠缠门。重新配置光学势能的能力保证了整个离子晶体的连通性,并且还实现了高效的中电路测量。我们研究了大规模并行多量子比特纠缠门的实现,这些门可同时在所有单元上运行,并提出了一种协议来补偿串扰误差,从而实现大规模寄存器的全面使用。我们说明了这种架构对于容错数字量子计算和模拟量子模拟都是有利的。
[删除]代表[删除],并经我们同意,可在认为适当的情况下,于[删除]递交申请截止日期当天早上前的任何时间,减少本文件所载的[删除]数目及╱或指示性[删除]金额(即[删除]港元减至[删除]港元)。在此情况下,有关[删除]数目及╱或指示性[删除]金额减少的通知将于作出有关减少的决定后尽快刊登于[南华早报](英文版)及[香港经济日报](中文版),但无论如何不得迟于[删除]递交申请截止日期当天早上。该等通知亦将于本公司网站www.rimag.com.cn及香港联交所网站www.hkexnews.hk上刊登。进一步的详细信息请参阅本文件的“[删除]的结构”和“如何申请[删除]”。
[删除]代表[删除],并经我们同意,可在认为适当的情况下,于[删除]递交申请截止日期当天早上前的任何时间,减少本文件所载的[删除]数目及╱或指示性[删除]金额(即[删除]港元减至[删除]港元)。在此情况下,有关[删除]数目及╱或指示性[删除]金额减少的通知将于作出有关减少的决定后尽快刊登于[南华早报](英文版)及[香港经济日报](中文版),但无论如何不得迟于[删除]递交申请截止日期当天早上。该等通知亦将于本公司网站www.rimag.com.cn及香港联交所网站www.hkexnews.hk上刊登。进一步的详细信息请参阅本文件的“[删除]的结构”和“如何申请[删除]”。
潘宁阱已用于对数百个离子进行量子模拟和传感,并提供了一种扩大捕获离子量子平台的有希望的途径,因为它能够在二维和三维晶体中捕获和控制数百或数千个离子。在潘宁阱和更常见的射频保罗阱中,激光通常用于驱动多量子比特纠缠操作。这些操作中退相干的主要来源是非共振自发辐射。虽然许多捕获离子量子计算机或模拟器使用时钟量子比特,但其他系统(尤其是具有高磁场的系统,如潘宁阱)依赖于塞曼量子比特,这需要对这种退相干进行更复杂的计算。因此,我们从理论上研究了自发辐射对在高磁场中使用捕获离子基态塞曼量子比特执行的量子门的影响。具体来说,我们考虑了两种类型的门——光移位( ˆ σ zi ˆ σ zj )门和 Mølmer-Sørensen( ˆ σ xi ˆ σ xj )门——它们的激光束近似垂直于磁场(量化轴),并比较了每种门中的退相干误差。在每种门类型中,我们还比较了与驱动门所用的激光束的失谐、偏振和所需强度有关的不同工作点。我们表明,这两种门在高磁场下的最佳工作条件下都能具有相似的性能,并研究了各种工作点的实验可行性。通过检查每个门的磁场依赖性,我们证明,当 P 态精细结构分裂与塞曼分裂相比较大时,Mølmer-Sørensen 门的理论性能明显优于光移门。此外,对于光移门,我们对高场下可实现的保真度与最先进的双量子比特离子阱量子门的保真度进行了近似比较。我们表明,就自发辐射而言,我们当前配置可实现的保真度比最好的低场门大约高一个数量级,但我们也讨论了几种替代配置,其潜在错误率与最先进的离子阱门相当。