核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。
癫痫是指中枢神经系统突然阵发性放电,导致不自主的运动、感觉或自主神经紊乱,可伴有或不伴有感觉中枢改变。年龄和神经发育成熟度决定了癫痫的临床表现和类型。大约 5% 的儿童有癫痫风险,其中一半在婴儿期首次发作。新生儿发病率更高(足月儿近 1%,早产儿 20%)。癫痫是一种由内部反复引发癫痫的疾病。癫痫的终生发病率为 3%,超过一半的病例始于儿童时期。癫痫的年发病率较低(0.5-0.8%),因为许多儿童超过癫痫年龄。脑电图和神经超声检查通常是癫痫活动的初步诊断检查。它们具有非侵入性和避免辐射暴露的好处。计算机断层扫描有助于检测钙化灶;但是,它有辐射暴露的风险。磁共振成像 (MRI) 是首选的成像方式,因为它能够描绘神经解剖结构、出色的灰白质分化、髓鞘形成状态和检测局灶性结构性脑损伤。
我们的大脑不仅仅是身体里的一块脂肪。它是人体的动力源,也是各种活动的控制中心。[1] 我们的身体有一种不同的系统来控制我们身体部位的各种活动。这就是神经系统,它还涉及大量的人体神经和细而大的结构,即脊髓。它是一个复杂而强大的神经集合,是任何生物都必须拥有的电线。这个系统被称为控制各种身体部位的神经元。在人脑中,73% 的身体部分由水组成。[2] 中枢神经系统包含一个主要部分,称为大脑。大脑被坚硬的头骨覆盖。实际上,大脑在头骨中的液体中游动。它负责认知功能、执行功能,并调节神经系统其他部分的功能。神经系统控制着从肌肉到整个身体感官的一切。[3-5]
1 Department of Neuroscience (DNS), University of Padova, Padua, Italy 2 Padova Neuroscience Center, University of Padova, Padua, Italy 3 Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King ' s College London, London, United Kingdom 4 Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy 5 Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany 6 International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany 7 Max-Planck-Institute of Psychiatry, Munich, Germany 8 Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy 9 Department of Neurosciences and Mental Health, Fondazione IRCSS Ca ' Granda Ospedale Maggiore Policlinico, Milan, Italy 10 Department of Psychiatry, Munich University Hospital, Munich, Germany 11 Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King ' s College London, London, United Kingdom * Correspondence: Email: fabio.sambataro@unipd.it
图1:来自临床数据仓库和Correponding标签的T1W脑图像的示例。a1:质量高的图像(第1层),没有gadolinium; A2:质量高(第1层),带有Gadolinium; B1:中等质量(第2层),没有Gadolinium(噪声1级); B2:中等质量(第2层),带有Gadolinium(对比1级); C1:不良质量(第3层),没有gadolinium(对比2级,运动2级); C2:不良质量(第3层),gadolinium(对比2级,运动级1级); D1:笔直排斥(分段); D2:直接拒绝(裁剪)。
抽象背景上下文:下背痛(LBP)是全球残疾的主要原因,具有巨大的社会经济负担。它主要是由椎间盘变性(IDD)引起的,这是一个进行性和年龄相关的过程。由于其准确表征椎间盘的形态的能力,磁共振成像(MRI)已被确定为诊断IDD中最有价值的工具之一。创新的定量MRI(QMRI)技术能够检测到最早的IDD迹象。目的:系统地回顾有关新型QMRI技术应用以检测早期IDD更改的可用报告。研究设计:系统文献综述。方法:对PubMed/Medline,Scopus,Cinahl,Embase,Central和Cochrane数据库进行系统搜索,直到2023年1月21日。搜索了有或没有粘性LBP患者的早期生化和建筑IDD变化的创新QMRI工具的随机和非随机研究。记录了有关研究人群,随访时间(适用)和使用的MRI序列的数据。Quadas-2工具用于评估纳入研究偏见的风险。结果:搜索产生了2005年至2022年之间的39篇文章。由于评估水含量,蛋白聚糖和糖胺聚糖的浓度的细微变化的能力,与常规MRI相比,所有新型QMRI技术都显示出提高了早期IDD变化的能力,并且能够评估水含量的细微变化以及分解代谢生物标志物的水平。©2023作者。结论:创新的QMRI技术已被证明有效地识别了EDD的过早变化。需要进一步的研究来验证其在更广泛的人群中的应用,并确认其在临床环境中的适用性。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
摘要在过去几年中,脑电图分析(EEG)记录的技术进步已允许以前所未有的精度和可靠性研究人脑中的神经活动和连通性。准确的脑电图源重建的关键要素是构造现实的头部模型,其中包含了有关电极位置和头部组织分布的信息。在本文中,我们介绍了MR-TIM,这是一种来自结构磁共振(MR)图像的头部组织建模的工具箱。工具箱由三个模块组成:1)图像预处理 - 原始MR图像被授予并准备进一步分析; 2)组织概率映射 - 模板组织概率图(TPM)在单个空间中是由MR图像产生的; 3)组织分割 - 整合了所有TPM的信息,以使MR图像中的每个体素都分配给特定的组织。Mr-Tim产生了高度逼真的3D口罩,其中五个与大脑结构(脑和小脑灰质,脑和小脑白质以及脑干)以及其他七个与其他头部组织(脑脊髓液,脾和紧凑的骨骼和紧凑的骨骼,眼睛,肌肉,肌肉,肌肉,脂肪和皮肤)有关。我们的验证是根据在健康志愿者和患者中收集的MR图像以及来自开源存储库的MR模板图像进行的,这表明MR TIM比全面组织分割的替代方法更准确。我们希望Tim先生在头部建模中提高精度,将有助于将脑电图作为脑成像技术的广泛使用。
摘要:磁共振成像(MRI)是一种重要的医学成像技术,以其能够提供具有显着软组织对比的人体高分辨率图像的能力而闻名。这使医疗保健专业人员能够对人体的各个方面(包括形态学,结构完整性和生理过程)获得宝贵的见解。定量成像提供了人体的组成测量,但是目前,要么需要长时间的扫描时间或仅限于低空间分辨率。不足采样的K空间数据采集大大帮助减少了MRI扫描时间,而压缩感应(CS)和深度学习(DL)重建已减轻了相关的不足采样伪像。另外,磁共振指纹(MRF)提供了一个有效且通用的框架,可以从单个快速MRI扫描中同时获取和量化多个组织性能。MRF框架涉及四个关键方面:(1)脉冲序列设计; (2)快速(未采样)数据采集; (3)在MR信号演化或指纹中编码组织特性; (4)同时恢复多个定量空间图。本文提供了对MRF框架的广泛文献综述,解决了与这四个关键方面相关的趋势。MRF在所有磁场强度和所有身体部位的范围内都面临特定的挑战,这可以为进一步研究提供机会。我们旨在回顾MRF的每个关键方面的最佳实践,以及不同的应用,例如心脏,大脑和肌肉骨骼成像等。对这些应用的全面审查将使我们能够评估未来趋势及其对将MRF转化为这些生物医学成像应用的影响。
低场磁共振成像(MRI)最近经历了文艺复兴,这在很大程度上归因于MRI中众多的技术功能,包括优化的脉冲序列,并行接收和压缩感应,改进的校准和重建算法以及用于图像后处理的机器学习的采用。对低场MRI的新注意力源于缺乏对传统MRI的访问以及对负担得起的成像的需求。低场MRI提供了可行的选择,因为它缺乏依赖射频屏蔽房,昂贵的液态氦气和低温淬火管道。此外,其尺寸和重量相对较小,可以在大多数设置中轻松且负担得起的安装。而不是取代常规MRI,低场MRI将为发展中国家和开发国家的成像提供新的机会。本文讨论了低场MRI,低场MRI硬件和软件的历史,市场上的当前设备,优势和缺点以及低场MRI的全球潜力。
1 哈尔滨工业大学电子信息工程学院,哈尔滨 150001,中国;zahid.rasheed@hit.edu.cn(ZR);yk_ma@hit.edu.cn(Y.-KM)2 嘉泉大学计算机工程系,韩国城满区 13120 3 天际线大学学院计算机学院,沙迦大学城,沙迦 1797,阿拉伯联合酋长国;mahmoudalkhasawneh@outlook.com 4 应用科学私立大学应用科学研究中心,安曼 11931,约旦 5 贾达拉大学研究中心,贾达拉大学,伊尔比德 21110,约旦 6 卡西姆大学公共卫生与健康信息学学院健康信息学系,卡西姆 51452,沙特阿拉伯; ssmtiery@qu.edu.sa 7 沙特阿拉伯阿卜哈 61421 哈立德国王大学应用医学科学学院基础医学科学系;mabohashrh@gmail.com * 通信地址:inam.fragrance@gmail.com