摘要 在 21 世纪,磁测量被广泛应用于许多不同的应用中。在本文中,我们介绍了磁测量在军用飞机头盔提示系统 (HMCS) 中的实际应用。我们从研究问题和提出的解决方案(想法)开始。接下来,描述头盔系统运行的理论基础。在此,我们包括地球磁场的特性及其建模(WMM 2015、IGRF 12、EMM2017),以及在平面线圈、亥姆霍兹线圈和反亥姆霍兹线圈中产生的磁场分布理论。在后面的详细部分,我们描述了 HMCS 应用的计量方面以及测试中使用的不同磁力仪的特性,以及示例测试结果。最后,我们描述了正在进行的研究,而在总结中,我们介绍了在 HMCS 系统中航空电子实现磁现象的进一步研究可能性和潜在研究方向。
©2021作者。本文是根据创造性的共识4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适合原始作者和来源的信誉,就可以提供与创建者许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的Creative Commons许可中,除非在材料的信用额度中另有指示。如果材料未包含在Thearticle的Creative Commons许可中,并且您的预期用途不允许法定调制或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
磁场传感器(磁力计)是一种测量磁场强度、方向或相对变化的设备。最早的磁场传感器是指南针,用于确定地球磁场的方向 [1]–[4]。可以说,第一台磁力计是由卡尔·弗里德里希·高斯于 1833 年发明的,用于测量绝对磁强度 [3]–[7]。它由一根金纤维水平悬挂的永久条形磁铁组成。高斯用它来测定地球磁场的强度。他们与威廉·爱德华·韦伯一起继续开发磁力计,并进一步改进它,直到 19 世纪 40 年代末。除了高斯和韦伯,19 世纪还有其他几位科学家开发了新型磁场传感器。然而,磁力仪技术在 20 世纪初发生了根本性变化,当时通过某些线圈结构的电流被用于确定局部磁场的性质 [3]–[14]。这种新方法使得开发更精确的磁场传感器成为可能,同时显著缩短了测量时间。从 20 世纪中叶开始,材料科学的进步带来了非常精确的微型磁力仪,如今,磁力仪被认为是多个系统的关键组件 [8]–[12]、[15]。
到处必须测量最优质的电流,量子磁力计打开了新的可能性。这项技术可在人机互动中一直在行业,研究和医疗技术中广泛以未来为导向的应用。用量子磁力计的肌肉信号控制假肢是一种现实的情况。
简介:美国宇航局的欧罗巴快船号航天器于 2024 年 10 月 14 日从肯尼迪航天中心成功发射。它将在接下来的 5.5 年内巡航,然后到达木星系统,在那里它将多次飞越木卫二,以表征其地下海洋的宜居性 [1,2]。欧罗巴快船磁力仪 (ECM) 对于确定海洋的厚度和电导率至关重要 [3,4]。ECM 由三个三轴磁通门 (FG) 磁力仪组成,它们位于梯度仪配置的吊杆上。2024 年 11 月 5 日,在三个传感器均已通电并以高速率模式 (16 个样本/秒) 收集数据的情况下,8.5 米磁力仪吊杆成功部署。在这项工作中,我们展示了 ECM 在此期间对航天器场和行星际磁场 (IMF) 的首次观测。
在地质研究中,人们采用多种方法来发现自然资源。在大面积研究中,人们使用飞机、直升机和无人机 (Un nm Anned V ehicle)。重力、电磁和磁力方法都用于研究。在重力方法中,可以测量地球重力的极小变化 [1]。现代重力仪的灵敏度小于 1 mGal (1 Gal = 10 −2 m/s 2 )。重力仪可以测量接近 10 −6 g 水平的地球重力变化。 莫斯科的 Gravimetric Technologies Ltd. 公司是少数几家领先的超灵敏重力仪生产商之一 [2]。图 1 [3] 显示了安装在 Cessna 404 飞机上的 GT-1A 重力仪。应用电磁法也可以发现自然资源矿藏。第一个电磁系统出现并于 20 世纪 20 年代在斯堪的纳维亚半岛、美国和加拿大开发。电磁法用于测量土壤的电导率。电磁系统安装在飞机或直升机上。大线圈由直升机牵引或由飞机携带。线圈中的电流脉冲产生强磁场(初级场),该磁场穿透地球各层(图2)。时变场在土壤中产生涡流。线圈电流切断后,只剩下产生磁场的涡流(二次
摘要。对 74 颗恒星进行了圆形光谱偏振观测,试图通过其光谱线中的纵向塞曼效应探测磁场。观测样本包括 22 颗正常 B、A 和 F 星、4 颗发射线 B 和 A 星、25 颗 Am 星、10 颗 HgMn 星、2 颗 λ Boo 星和 11 颗磁性 Ap 星。使用最小二乘反卷积多线分析方法(Donati 等人,1997 年),从每个光谱中提取了高精度斯托克斯 I 和 V 平均特征。我们完全没有发现正常、Am 和 HgMn 星中存在磁场的证据,纵向场测量的上限通常比以前为这些物体获得的任何值小得多。我们得出结论,如果这些恒星的光球层中存在任何磁场,这些磁场的排列顺序与磁性 Ap 恒星不同,也不类似于活跃的晚期恒星的磁场。我们还首次在 A2pSr 恒星 HD 108945 中检测到磁场,并对五颗先前已知的磁性 Ap 恒星的纵向磁场进行了新的精确测量,但没有在其他五颗被归类为 Ap SrCrEu 的恒星中检测到磁场。我们还报告了几个双星系统的新结果,包括 Am-δDel SB2 HD 110951 快速旋转次星的新 v sin i。
传统的参考材料(如 Nil AI/Bronze)具有少量的铁磁性成分,以便达到所需的相对磁导率。由于相关的磁滞,它们的相对磁导率在不同施加的磁场强度下会有所不同。NPL Lowmu 参考材料是使用分散在丙烯酸基质中的铁粉制成的。对于粒径较小的分散铁粉,磁滞曲线基本上是一条直线,梯度几乎恒定。因此,随着施加的磁场强度的增加,相对磁导率保持相对恒定。在图 3a 和 3b 中,基于铁粒子技术的参考材料的相对磁导率与施加的磁场强度(磁导率曲线)的关系被绘制出来,并与传统材料的相对磁导率进行了比较。
氢是一种重要的能源载体,提取能源时不会产生碳排放,还可用作能源储存,以提高许多可再生能源的实用性。氢气生产的主要方法利用化石燃料,从而产生碳排放。电解是一种较少使用的氢气生产技术,其中电将水分子分解为氧气和氢气。如果电力来自可再生能源,则该过程几乎不释放碳,产生的氢气被称为“绿色氢气”。虽然电解和化石燃料方法的氢气生产效率相当,但使用电力会导致电解成本明显增加。为了使电解可用于大规模氢气生产,必须减少能量损失以提高其效率。本研究调查了电解质浓度和磁场应用对碱性电解中氢气生产率的综合影响。先前的研究表明,存在最佳电解质浓度,可实现最高的氢气生产率,通常在室温下约为 30 wt%。其他研究表明,施加磁场会增加电解质溶液的电导率,从而增加氢气生产率。如果磁场定向产生向上的洛伦兹力,则产生的对流和洛伦兹力会促使气泡从电极中脱落,从而降低电阻并增加电极的活性面积。在本项目中,碱性电解在室温下使用 1.8 V 和 KOH 作为电解质进行。电解质溶液的流速固定在 50 cc/min,用水置换系统测量产生的氢气量。电解质浓度在 5 wt% - 30 wt% 之间变化。在每个选定的浓度水平下,进行一次无磁铁电解和一次 1T 磁场电解,1T 磁场由永磁体定向产生向上的洛伦兹力。结果表明,在每个浓度水平下,磁场都会增加氢气的产生率,在 10 wt% 时增幅最大。在没有磁场的情况下,最佳浓度约为 30 wt%,但在 1 T 磁场下,最佳浓度降低到 10 wt%。因此,施加磁场需要降低电解质浓度,除了提高氢气生产率之外,还可以节省成本。
免责声明:该出版物是由加拿大国防部国防部的组织编写的。本出版物中包含的信息是通过最佳实践和遵守负责任的科学研究行为的最高标准得出和确定的。此信息旨在使用国防部,加拿大武装部队(“加拿大”)和公共安全伙伴,并且可以根据允许的方式与学术界,工业,加拿大盟友和公众共享(“第三方”)。第三方根据本出版物做出的任何依赖或决定的任何用途都应自行进行风险和责任。加拿大对由于出版物的任何使用或依赖而可能造成的任何损害或损失承担任何责任。