© Prof. Mirko Cinchetti 晶体中过渡金属离子局部 3d 态之间的激发,通常称为 dd 跃迁,在固态物理、材料科学和化学中的各种现象中起着关键作用。这些跃迁对过渡金属氧化物的光学性质、氧化物表面的催化活性、高温超导性和磁行为有重大贡献,促进了自旋交叉跃迁,并将光激发与声子和磁振子等量化现象联系起来。二维 (2D) 反铁磁体中发现的独特效应,例如电子-声子束缚态、亚太赫兹 (sub-THz) 频率磁振子模式和混合声子-磁振子模式,凸显了由 dd 跃迁驱动的复杂现象。在本次演讲中,我将讨论我们最近对 FePS 3 的研究,之所以选择 FePS 3,是因为它有望成为一种可扩展的范德华反铁磁半导体,即使在 2D 极限下也能保持磁序。我们采用了两种互补的实验方法。首先,进行泵浦探测磁光测量,以观察激光驱动的晶格和自旋动力学。与 Fe 2+ 多重态中的 dd 跃迁共振的泵浦诱导了以 3.2 THz 振荡的相干声子模式。值得注意的是,这种模式在低光吸收范围内是可激发的,甚至可以保护单个反铁磁层免受损坏。模式的振幅随温度升高而减小,在系统转变为顺磁相时在尼尔温度下消失,从而说明了它与长程磁序的联系。此外,在外部磁场中,这种 3.2 THz 声子模式与磁振子模式混合,从而能够对所得的声子-磁振子混合模式进行光学激发 [1]。此外,我们利用角分辨光电子能谱 (ARPES) 探测基态的电子结构 [2],并利用时间分辨 ARPES 捕捉 FePS 3 中选定自旋允许和自旋禁忌 dd 跃迁的超快动力学 [3]。磁光实验的见解与 ARPES 的发现相结合,揭示了 FePS 3 中 dd 跃迁背后的复杂准粒子动力学,从而更深入地了解它们在量子材料行为中的作用。
合计 71 16 16 17 11 9 2 本系最低毕业学分为 130 学分 Minimum Credits(130 credits) must be completed 全校共同 24 学分、专业必修 71 学分、自由选修 2 学分、专业选修(必选) 18 学分、其他非通识专业 自由选修 15 学分(限理工相关课程且程式语言课程仅可认列一门) 24 credits University Core Curriculum 、 71 credits Major Required Courses 、 2 credits from chosen elective courses 、 18 credits Professional Electives (Required) 、 15 credits from optional non-general education courses in fields required by the major (Limited to STEM-related courses and only one programming language course can be counted)
磁振子学是研究自旋波的物理特性并利用其进行数据处理的科学领域。可扩展至原子尺寸、从 GHz 到 THz 频率范围的操作、非线性和非互易现象的利用、与 CMOS 的兼容性只是磁振子提供的众多优势中的一小部分。尽管磁振子学仍然主要定位于学术领域,但该领域所涵盖的科学和技术挑战范围正在得到广泛研究,许多概念验证原型已经在实验室中实现。本路线图是许多作者共同努力的成果,涵盖了多功能自旋波计算方法、它们的概念构建块以及底层物理现象。特别是,路线图讨论了使用布尔数字数据的计算操作、神经形态计算等非常规方法以及基于磁振子的量子计算的进展。本文由七个大主题部分组成的子节集合组成。每个小节由一位或一组作者准备,并简要描述当前的挑战和研究方向进一步发展的前景。
摘要:近年来,二维磁性材料 (2DMM) 已成为二维材料领域的一个研究热点,因为它们在基础研究以及未来自旋电子学、磁子学、量子信息和数据存储等技术相关应用中具有重要意义。2DMM 丰富的工具箱及其多样化的可调谐性使得对二维磁序的研究达到了前所未有的水平,研究范围深入到单原子层材料,远远超出了经典的薄膜磁性,为电子学、磁光学和光子学提供了一条极具前景的途径。在各种自由度中,自旋和声子 (即晶格振动的量子) 之间的相互作用,即所谓的自旋-声子耦合,是探索二维磁性的重要调谐旋钮,创造了新型准粒子并控制磁序。本综述概述了 2DMM 中自旋-声子耦合研究的最新进展。讨论了利用自旋-声子耦合研究二维磁性的各种技术。本文还总结了基于自旋-声子耦合调节二维磁序的最新进展,重点介绍了新功能。此外,本文还简要讨论了基于自旋-声子耦合的器件开发和概念。本综述将为我们介绍二维磁体及其功能器件中自旋-声子耦合研究的现有挑战和未来方向。
摘要:我们从理论上研究了低频光脉冲与拓扑和磁有序两七重层 (2-SL) MnBi 2 Te 4 (MBT) 和 MnSb 2 Te 4 (MST) 中的声子共振的影响。这些材料具有相同的对称性和原始形式的反铁磁基态,但表现出不同的磁交换相互作用。在这两种材料中,剪切和呼吸拉曼声子都可以通过与光激发红外声子的非线性相互作用来激发,使用可以在当前实验装置中获得的强激光脉冲。光诱导的瞬态晶格畸变导致有效层间交换相互作用和磁序的符号发生变化,并伴有拓扑能带跃迁。此外,我们表明,通常存在于 MBT 和 MST 样品中的中度反位无序可以促进这种影响。因此,我们的工作确立了 2-SL MBT 和 MST 作为实现非平衡磁拓扑相变的候选平台。
实现对多量子发射的精确控制对于量子信息处理至关重要,特别是与操纵量子态的先进技术相结合时。在这里,通过旋转谐振器来诱导萨格纳克效应,我们可以在光驱动共振跃迁的条件下获得非互易光子-声子和光子-磁振子超拉比振荡。打开这种超拉比振荡的耗散通道,通过将纯多量子态转移到系统外部的捆绑多量子态,可以实现纠缠光子-声子对和光子-磁振子对的定向束发射。这种非互易发射是一种可以精确控制的灵活开关,甚至可以通过从不同方向驱动谐振器,同时发射不同的纠缠对(如光子-声子或光子-磁振子对),但方向相反。这种灵活操纵系统的能力使我们能够实现定向纠缠多量子发射器,并且在构建混合量子网络和片上量子通信方面也具有潜在的应用。
磁特征和方法标准收集了具有多年磁传感器经验的人员的企业知识。这些个人因其对该学科的贡献而受到认可和尊重。大约有 32 名或更多技术人员为本文档的编写做出了贡献。这项团队工作涉及政府、军队、大学和公司的多个机构。这些组织包括但不限于德克萨斯大学;国家地面情报中心;尤马试验场;白沙导弹靶场;MITRE 公司;宾夕法尼亚州立大学;佛罗里达州埃格林空军基地的 46TW/TSR;美国陆军研究实验室 - 皮卡汀尼兵工厂;Sentech, Inc.;阿诺德工程开发中心;美国陆军水道实验站;阿伯丁测试中心;Bishop Multisensors 公司;和 BAE 系统。
Exxelia 是一家复杂无源元件和精密子系统制造商,专注于高要求的终端市场、应用和功能。Exxelia 产品组合包括各种电容器、电感器、变压器、电阻器、滤波器、位置传感器、滑环和高精度机械零件,服务于航空航天、国防、医疗、铁路、能源和电信等众多领先的工业领域。
摘要:铁磁性和超导性(FMS)的共存一直是冷凝物质物理学的迷人领域,可洞悉非常规超导配对,自旋三重相互作用以及拓扑保护的表面状态。本文综述了FMS研究中最新的理论和实验进步,重点是隧道光谱,自旋轨道耦合以及拓扑材料的作用。我们讨论了自旋极性电流,超导间隙和铁磁顺序之间的相互作用,以及在包括拓扑绝缘子和石墨烯在内的新型材料中识别和操纵这些现象的挑战。特定的重点是使用隧道光谱作为探测对称性的工具,以及外部磁场和自旋轨道耦合对这些系统的影响。
