1 湖南科技大学机电学院,湖南省高效轻合金构件成形技术与抗损伤评价工程研究中心,湘潭 411201 2 中南大学,国家级高强度结构材料技术重点实验室,长沙 410083 3 杭州电子科技大学材料与环境工程学院,先进磁性材料研究所,杭州 310018 4 长春工业大学材料科学与工程学院,先进结构材料教育部重点实验室,长春 130012 * 通讯作者:liuyang7740038@163.com (YL); federer.song@163.com (YS); songxiaolei@ccut.edu.cn (XS)
材料科学 LTPC 2 0 2 3 总接触时数 - 60 先决条件 无 目的 本课程介绍了快速发展的材料科学领域的几个先进概念和主题。学生有望对该主题有所了解,并获得有关所需工程应用的材料选择和操作的科学理解。教学目标 1. 对先进材料、它们的功能和特性在技术应用方面获得基本的了解 2. 强调材料选择在设计过程中的重要性 3. 了解生物材料的主要类别及其在现代医学中的功能 4. 熟悉纳米科学和技术的新概念 5. 让学生掌握仪器、测量、数据采集、解释和分析的基础知识 单元 I — 电子和光子材料(6 小时) 电子材料:费米能量和费米-狄拉克分布函数-本征和非本征半导体中费米能级随温度的变化-霍尔效应-稀磁半导体(DMS)及其应用 超导材料:常温和高温超导-应用。 光子材料:LED — LCD - 光电导材料 - 光探测器 - 光子晶体及应用 - 非线性光学材料及其应用的基本思想。第二单元 — 磁性和电介质材料(6 小时)磁性材料:基于自旋的磁性材料分类 - 硬磁材料和软磁材料 - 铁氧体、石榴石和磁铅石 - 磁泡及其应用 - 磁性薄膜 - 自旋电子学和器件(巨磁阻、隧道磁阻和庞磁阻)。
在神经形态计算中,人工突触提供多权重电导状态,该状态基于来自神经元的输入而设置,类似于大脑。除了多个权重之外,突触还可能需要其他属性,并且可能取决于应用,这需要从相同的材料中生成不同的突触行为。在这里,我们测量基于磁性材料的人工突触,这些磁性材料使用磁隧道结和磁畴壁。通过在单个磁隧道结下方的畴壁轨道中制造光刻凹口,我们实现了 4-5 个稳定的电阻状态,这些状态可以使用自旋轨道扭矩进行重复电控制。我们分析了几何形状对突触行为的影响,结果表明梯形设备具有非对称权重更新和高可控性,而直线设备具有更高的随机性,但具有稳定的电阻水平。设备数据被输入到神经形态计算模拟器中,以显示特定于应用的突触功能的实用性。通过实施应用于流式 Fashion-MNIST 数据的人工神经网络,我们表明梯形磁突触可用作高效在线学习的元生函数。通过实施用于 CIFAR-100 图像识别的卷积神经网络,我们表明直磁突触由于其阻力水平的稳定性而实现了近乎理想的推理精度。这项工作表明多权重磁突触是一种可行的神经形态计算技术,并为新兴的人工突触技术提供了设计指南。
课程目标:通过确定光学现象(如干扰,衍射等)的重要性,启发了量子力学的质量和概念,介绍了二元材料和磁性材料的新颖概念。课程结果:CO1:分析由于极化,干扰和衍射引起的光强度变化。二氧化碳:熟悉晶体及其结构的基础。CO3:解释量子力学的基本原理,并将其应用于颗粒的一维运动。CO4:总结介电的各种极化并对磁性材料进行分类。co5:解释量子力学的基本概念和固体的带理论。二氧化碳:使用大厅效应确定半导体的类型。单元I波光学干扰:简介 - 叠加原理 - 光的干扰 - 干扰薄膜(反射几何形状)和应用 - 薄膜中的颜色 - 牛顿的环,测定波长和折射率。衍射:简介 - 菲涅尔和弗劳恩霍夫衍射 - 由于单个缝隙,双缝隙和n斜缝(定性) - 衍射光栅 - 分散幂和刺光的能力(定性)。极化:极化的简介 - 通过反射,折射和双重折射的极化 - 尼科尔的棱镜-HALF波和四分之一波板。III单元晶体学和X射线衍射晶体学:太空晶格,基础,晶胞和晶格参数 - Bravais Lattices - 晶体系统(3D) - 配位数 - SC,BCC&FCC的包装分数,BCC&FCC- Miller Indices - 连续(HKL)平面之间的分离。X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods UNIT III Dielectric and Magnetic Materials Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility, Dielectric constant and Displacement Vector – Relation between the electric vectors - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field - Clausius- Mossotti equation - complex dielectric constant – Frequency dependence of polarization – dielectric loss Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability – Atomic origin of magnetism - Classification of magnetic materials: Dia, para, Ferro, anti-ferro & Ferri magnetic materials - Domain concept for铁磁和域壁(定性) - 磁滞 - 软磁性材料。
磁场可以作为氢能收集的唯一触发器,尽管磁场具有穿透深度深、噪音和损伤小、控制参数(即幅度和频率)灵活等优势。多铁性和磁电纳米复合材料为利用磁场直接触发制氢提供了机会。[11–14] 虽然磁场可以影响磁性材料中电子的运动,但它们不能产生催化反应所必需的内部电场和电荷。相反,当施加磁场时,多铁磁电复合材料中会发生磁电耦合。在典型的应变介导磁电复合材料中,磁性元件响应磁场并传输磁致伸缩
超导体,磁铁和新型量子材料我们对高温超导体感兴趣,这些高温超导体很难用到目前为止的理论解释,拓扑量子材料可以解释但在现实中很难找到,而对学术和工业领域有用的磁性材料。这些材料使用通量法,化学蒸气传输方法等以单晶或粉末形式合成。此外,还研究了它们的物理特性,包括原子结构,电性能,磁性和热性能。让我们开始说:“这是世界上我们在自己的实验室中制作的一种有趣的材料。“ _新颖的量子材料实验室:Keeseong Park教授
Ara Partners 合伙人 Tuan Tran 表示:“我们很高兴收购 VAC,它是西方首屈一指的高性能磁性材料生产商,也是全球众多行业电气化和能源效率的关键推动者。我们相信,随着全球各公司对工业流程进行脱碳,以及移动出行电气化的发展,对 VAC 差异化、定制化产品的需求将继续快速增长,我们期待利用我们的专业知识进一步推动 VAC 的持续成功。我们很高兴与 Erik Eschen 和 VAC 才华横溢、经验丰富的管理团队合作,并在公司扩大其在北美的制造能力以推动交通运输脱碳之际支持其下一阶段的增长。”
决定了人们的生活。如今,我们正在使用科学驱动的先进材料来构建我们的运输系统、生产能源、通信、生产药品和改善人类福祉。在我们快速变化的社会中,未来 60 年内的发展将由各种材料的创新实现。这些可能包括纳米材料、能源材料、生物材料、超材料、二维材料、碳基材料、非平衡材料、磁性材料、电子和超导材料以及尚未探索或发现的材料。在原子尺度上控制和操纵材料结构将使制造具有为特定应用而设计的特性和工程性能的定制材料成为可能。
信息技术和生物医学,例如健康信息学、生物医学信号和图像处理。会议重点介绍了超导性、新型磁性材料、超材料、航空材料、光电和光子材料、光伏结构、量子点、一维和二维纳米材料、多功能混合材料(如核壳结构)等领域的新理论和实验结果。会议论文集反映了控制几类纳米复合材料性能的最新技术,这些材料将在各个领域具有重要的未来应用。值得注意的是,会议论文集还包括一些评论论文,反映了新型固态结构以及基于它们的纳米电子和光电器件的开发中令人着迷的历史和最新成就。