课程目标:通过确定光学现象(如干扰,衍射等)的重要性,启发了量子力学的质量和概念,介绍了二元材料和磁性材料的新颖概念。课程结果:CO1:分析由于极化,干扰和衍射引起的光强度变化。二氧化碳:熟悉晶体及其结构的基础。CO3:解释量子力学的基本原理,并将其应用于颗粒的一维运动。CO4:总结介电的各种极化并对磁性材料进行分类。co5:解释量子力学的基本概念和固体的带理论。二氧化碳:使用大厅效应确定半导体的类型。单元I波光学干扰:简介 - 叠加原理 - 光的干扰 - 干扰薄膜(反射几何形状)和应用 - 薄膜中的颜色 - 牛顿的环,测定波长和折射率。衍射:简介 - 菲涅尔和弗劳恩霍夫衍射 - 由于单个缝隙,双缝隙和n斜孔(定性) - 衍射光栅 - 分散幂和刺光的能力(定性)。极化:极化的简介 - 通过反射,折射和双重折射的极化 - 尼科尔的棱镜-HALF波和四分之一波板。III单元晶体学和X射线衍射晶体学:太空晶格,基础,晶胞和晶格参数 - Bravais Lattices - 晶体系统(3D) - 配位数 - SC,BCC&FCC的包装分数,BCC&FCC- Miller Indices - 连续(HKL)平面之间的分离。X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods UNIT III Dielectric and Magnetic Materials Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility, Dielectric constant and Displacement Vector – Relation between the electric vectors - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and
印度理工学院 Kharagpur 分校材料科学中心的 S. Ram 博士发表了题为“什么是混合纳米复合材料,它是工程科学和技术”的互动讲座。他的研究兴趣包括开发不同类型的玻璃/陶瓷、磁性陶瓷、金属间化合物、纳米流体、石榴石磁光材料、金属陶瓷、高能量密度磁体、铁氧体、超导体、磁传感器、GMR、GMS 和 GMC 材料、储能材料、固体燃料、纳米结构固体、纤维和复合材料、自旋电子学、光子学。演讲者很好地强调了材料科学与技术在开发材料(尤其是磁性应用)方面的结合,参与者可以在开发用于储能应用的新型磁性材料时使用这种结合。
许多种细菌能够制造比合成材料更精细的材料。这些产品通常在细胞内产生,这些细胞内具有真核细胞器的许多特征。一群独特而优雅的生物处于细胞器形成和生物矿化机制研究的前沿。趋磁细菌 (MTB) 产生的细胞器称为磁小体,其中包含磁性材料纳米晶体,了解磁小体形成和生物矿化背后的分子机制是一个丰富的研究领域。在本综述中,我们重点关注磁小体形成和生物矿化背后的遗传学。我们介绍了 MTB 遗传学发现的历史和近年来发现的关键见解,并对 MTB 遗传学研究的未来提供了展望。
具有相对简单架构的 MEMS 设备可用于创建可调涡旋光束。一种这样的设备被称为“筷子”设备,采用两个平行电极的形式,它们之间由一个狭窄的间隙隔开,并施加有电偏置电压 [23,24]。由于电极上的电荷分布类似于一系列平行偶极子 [24] 上的电荷分布,因此可以将其与 Aharonov-Bohm 效应和轴向磁化针的使用进行类比 [25]。正如最近的一篇论文 [26] 所解释的那样,电子束上的每种磁效应都可以使用一组电极来再现。与磁性材料相比,使用静电元件的优势包括它们具有更大的灵活性和可调性,以及可以使用高度紧凑的静电 MEMS 相位板来引入相对较大的相位效应。
与超导体连接的抽象磁性材料披露了具有量子技术潜力很大的新型物理现象。将分子用作磁成分已经表现出巨大的承诺,但是分子领域提供的大量特性仍然在很大程度上没有探索。在这里,我们研究了在亚单层覆盖范围内沉积在超导铅表面上的单个分子磁铁(SMM)。这种组合揭示了超导体(SC)对SMM的自旋动力学的强烈影响。表明,向冷凝水状态的超导过渡将SMM从阻塞的磁化状态转换为谐振量子隧穿态度。此结果为通过SCS和使用SMM作为超导状态的局部探针提供了控制SMM磁性的观点。
最近引入了称为Altermagnets(AM)的磁性材料具有零净磁化,但具有依赖动量的磁交换场,当与超导性结合使用时,它可能具有有趣的含义。在我们的工作中,我们使用准经典框架来研究这种材料对AM/S BiLayer中常规超导体的影响。我们讨论了AM/s的超导相图和热容量,同时与铁磁性 - 螺旋体双层比较进行了比较。此外,我们检查了状态的密度并分析系统对外部磁场的响应。我们通过考虑在平面内和平面外方向上的外部场来说明自旋敏感性和AM/S磁化的各向异性,从而促进了AM/S杂种系统中AM的实验检测范围和表征的范围。
1. 材料科学与工程 2. 纳米科学与纳米技术 3. 生物材料 4. 先进材料 5. 能源材料 6. 复合材料 7. 聚合物材料 8. 材料表征 9. 材料化学 10. 材料物理 11. 结构与纳米结构材料 12. 石墨烯、碳与二维材料 13. 计算材料科学 14. 电子、光学与磁性材料 15. 介电与压电材料 16. 绿色技术材料 17. 电池与固体电解质材料 18. 材料合成与加工 19. 材料与冶金学 20. 玻璃基材料 21. 仿生材料 22. 材料制造创新 23. 金属铸造 24. 晶体学 25. 凝聚态物理学 26. 半导体与超导体 27. 矿物学 28. 光学 作者指南
缩小尺寸中的磁性材料不仅是磁性基础研究的出色平台,而且在技术进步中起着至关重要的作用。单层2D范德华系统中固有磁性的发现引起了巨大的兴趣,但是1D磁性范德华材料的单链极限在很大程度上尚未开发。本文报告了具有组成MX 3(M = Cr,V和X = Cl,Br,I)的1D磁范德华材料的家族,并在碳纳米管保护性核心内以完全分离的方式制备。原子分辨率扫描透射电子显微镜确定了独特的结构,这些结构与众所周知的2D蜂窝晶状体MX 3结构相差。密度功能理论计算揭示了电荷驱动的可逆磁相变类。
摘要:非晶态金属 (AM),特别是非晶态铁磁金属,被认为是一种令人满意的磁性材料,可用于开发高效、高功率密度的电磁设备,例如电机和变压器,这得益于其各种优点,例如合理的低功耗和中高频下的非常高的磁导率。然而,这些材料的特性尚未得到全面研究,这限制了其在具有通常具有旋转和非正弦特征的磁通密度的高性能电机中的应用前景。在不同磁化下对 AM 进行适当的表征是将这些材料用于电机的基础之一。本文旨在广泛概述在存在各种磁化模式(特别是旋转磁化)的情况下的 AM 特性测量技术,以及用于先进电机设计和分析的 AM 特性建模方法。还讨论了可能的未来研究任务,以进一步改进 AM 应用。
1. 材料科学与工程 2. 纳米科学与纳米技术 3. 生物材料 4. 先进材料 5. 能源材料 6. 复合材料 7. 聚合物材料 8. 材料表征 9. 材料化学 10. 材料物理 11. 结构与纳米结构材料 12. 石墨烯、碳与二维材料 13. 计算材料科学 14. 电子、光学与磁性材料 15. 介电与压电材料 16. 绿色技术材料 17. 电池与固体电解质材料 18. 材料合成与加工 19. 材料与冶金学 20. 玻璃基材料 21. 仿生材料 22. 材料制造创新 23. 金属铸造 24. 晶体学 25. 凝聚态物理学 26. 半导体与超导体 27. 矿物学 28. 光学 作者指南