氧化铁纳米颗粒是非常有用的材料,因为它们具有珍贵和潜在的应用,丰度,较低的加工成本,稳定性,环境友好的功能和生物相容性[1]。近年来,α-FE 2 O 3已广泛应用于催化剂,气体传感器,色素,光学和电磁,药物递送等,因为它们的增强特性归因于其各种结构[2]。氧化铁纳米颗粒已经通过各种方法合成,但是开发易于环保和环保的合成方法至关重要[3]。赤铁矿(α-FE 2 O 3)的带隙为1.9-2.2 eV,可以充当非常好的半导体催化剂[4]。在合成过程中,材料的带隙的变化可能有助于进一步改善其生物医学应用和光学特性[5]。纳米化材料的最新发展显示出多种用途,例如可充电电池,超级电容器,磁性材料,照片催化降解和电极材料[6]。铁的氧化物以三种常见形式出现,即赤铁矿,磁铁矿和磁铁矿,其中赤铁矿(α-fe 2 O 3)是
电气与计算机工程系的研究生课程是一个充满活力和蓬勃发展的中心,在广泛的领域开展世界公认的研究。该系与当地工业界以及波士顿世界著名的医院和医疗中心有着密切的联系,并与他们一起参与了许多联合研究项目。在五个由 NSF 和 DHS 资助的研究中心和 20 多个工业合作伙伴的帮助下,教师和学生正在积极开展计算机视觉、模式识别和机器学习、脑机接口、计算机架构、高性能计算、嵌入式系统、硬件和软件安全、电力系统和电力电子、水下通信网络和信号处理、机器人技术、信息理论、通信、控制和信号处理、物联网、射频、电磁学、光学和磁性材料、微/纳米机械结构和先进纳米材料、功率优先系统/计算机架构、超低功耗生物医学和神经电路和系统等领域的前沿研究。
过去二十年来目睹了对Van-der-Waals(VDW)材料的研究爆炸,这是一类广泛的固体,在该固体中,平面晶体板由VDW部队粘合在一起。通常,这些材料只能将其稀释为几个原子层,甚至可以将其变成单个原子纸,从而意识到其传统散装形式的二维(2D)变体。由于在2000年代初期的单层(1L)的第一次驱动器以来,已经将各种VDW材料隔离并以2D极限进行了隔离和研究,包括金属,宽间隙绝缘子,半导体,半导体,半金属,超级导管,磁性材料,磁性材料,以及更多。[1]中,在这些半金属中,例如石墨烯和2D半导管,通常由VI组VI过渡金属二甲硅烷基(TMDC)代表,在基本凝聚的物理学以及在电子,电子,光电电子技术中以及在基本凝聚的物理学方面创造了令人兴奋的新机会。[2-4]由于光学相互作用和频段结构发生了巨大变化,在从几层到1L极限的过渡中可能发生,因此在2D Light-Matter相互作用和超级超平均光电设备中证明了2D半导体和半米的独特机会。这值得探索其光诱导的物理学,从而导致新型量子现象。2D材料的关键特性之一是增强的电子 - 电子库仑相互作用,其介电筛选和低维度引起。这些相互作用不仅强烈修改平衡频带结构,而且更改了(照片)激发的带构结构。[5],例如,强烈结合的激子[6](由绑定的电子和孔组成),即使在室温下,也要赋予2D半导体的光学响应。这些摘录显示出各种各样的物种,具有不同的自旋,[7] Monma,[8]和电荷[9]影响其光 - 肌电相互作用的频谱,动力学和应用。2D材料的另一个属性是它们能够将其堆放到其他2D材料和基板上,几乎没有约束。[10]这些结构中的层间相互作用促进了一种独特的手段,用于设计异质结构属性和功能,而不是组成材料的材料。[11,12]这些属性包括动量依赖性层
摘要:与磁致伸缩系数高但矫顽场大的多晶 Fe 基合金和磁致伸缩系数较小的 Co 基非晶合金(λ s = − 3 至 − 5 ppm)相比,Fe 基非晶材料具有高饱和磁致伸缩系数(λ s = 20–40 ppm)和低矫顽场,为磁传感器、执行器和磁致伸缩换能器提供了新的机会。增材层制造 (ALM) 为更复杂的净成型设计提供了一种新的制造方法。本文回顾了用于制造 Fe 基非晶磁性材料的两种不同的 ALM 技术,包括结构和磁性能。选择性激光熔化 (SLM)——一种粉末床熔合技术——和激光工程净成型 (LENS)——一种定向能量沉积方法——均已用于制造非晶态合金,因为它们在文献中具有高可用性和低成本。利用 SLM 技术引入了两种不同的扫描策略。第一种策略是双扫描策略,可实现 96% 的最大相对密度和 1.22 T 的相应磁饱和度。它还将玻璃相含量提高了 47% 的数量级,并提高了磁性能(将矫顽力降低至 1591.5 A/m,将磁导率提高至 100 Hz 时的 100 左右)。第二种是新颖的扫描策略,涉及两步熔化:初步激光熔化和短脉冲非晶化。这使非晶相分数增加到高达 89.6%,相对密度增加到 94.1%,并将矫顽力降低到 238 A/m。另一方面,尽管 LENS 技术具有提供优异的机械性能、可控的成分和微观结构等优点,但由于其几何精度较低(0.25 毫米)且表面质量较低,因此在非晶态合金生产中的应用并不像 SLM 那样广泛。因此,它通常用于复杂程度较低的大型部件及其修复,由于尺寸限制而限制了非晶态合金的生产。本文全面回顾了这些用于 Fe 基非晶态磁性材料的技术。
背景:目前,没有任何商用现货 (COTS) 电感器材料或空心电感器能够令人满意地满足未来海军电力和能源系统在功率处理、效率、体积效率和温升方面的需求。这一不可否认的结论不仅需要新材料,还需要一种新的超高频材料设计范例,以捕获 250 MHz 或更高的带宽。需要专注于开发用于电感器的新型磁性材料,着眼于将应用扩展到高频变压器,以提供高 SWAP+C2(尺寸、重量和功率加上成本和冷却)和可靠的超高频应用电感器。此外,截止频率和磁导率/磁化(电感器饱和电流)具有反比关系,与尖晶石铁氧体和合金中观察到的众所周知的趋势一致(即 Snoek 关系)。然而,更宽的带宽(即更高的截止频率)是以更低的磁导率和磁化为代价的,这意味着更低的功率处理能力、更高的损耗因子和对 SWAP+C2 的妥协。然而,具有更高磁导率的样品
摘要:具有非共线自旋排列的磁性材料由于其在新兴的计算技术和记忆设备中的潜在用途而引起了极大的兴趣。竞争的磁相互作用,即磁挫败感,是非连续性磁性结构的主要起源之一。虽然沮丧的系统主要是在磁绝缘子中研究的,但将磁性挫败与电气连接率相结合可以同时进行电荷和自旋操作,这对于电子设备的设计至关重要。在这里,我们提出了一个新的金属间实心溶液LAMN 2 -x au 4+ X,其晶体结构可容纳磁性沮丧的MN方形网。粉末中子衍射和第一原理分析提供了证据表明,金属lamn 2-x au 4+ x相可以托管以挫败感驱动的刺猬旋转涡流晶体为一种罕见的非胶流磁状态,以前是针对铁pnictides的唯一观察到的。■简介
背景:目前,没有任何商用现货 (COTS) 电感材料或空心电感能够令人满意地满足未来海军电力和能源系统在功率处理、效率、体积效率和热升方面的需求。这一无可否认的结论不仅需要新材料,还需要一种新的超高频材料设计范例,以捕获 250 MHz 或更高的带宽。需要专注于开发用于电感的新型磁性材料,着眼于将应用扩展到高频变压器,以提供高 SWAP+C2(尺寸、重量和功率加上成本和冷却)和可靠的超高频应用电感。此外,截止频率和磁导率/磁化(电感饱和电流)具有反比关系,与尖晶石铁氧体和合金中观察到的众所周知的趋势一致(即 Snoek 关系)。然而,更宽的带宽(即更高的截止频率)是以更低的磁导率和磁化为代价的,这意味着更低的功率处理能力、更高的损耗因子和对 SWAP+C2 的妥协。然而,具有更高磁导率的样品
光学材料的设计、合成和应用,专门研究多功能新型发光材料、二维材料和变色/光学可变颜料,用于防伪油墨配方,打击货币、护照和重要文件的伪造。 开发隐形墨水(在 365 nm 紫外线 LED 下可见的红色发光),用于防止重复投票。 开发用于高对比度荧光细胞成像以及用于药物输送应用的 MRI 高对比度成像的发光磁性材料。 开发与蓝色二极管激光器集成的黄色荧光粉,为汽车前照灯应用产生白光。 开发用于光学显示和储能应用的碳奇异材料(石墨烯、石墨烯量子点、碳纳米管和纳米纤维)。 设计自主开发的 CVD 装置,用于在 Si/SiO 2 基板上连续生长高度可重复的“MoS 2 /MoSe 2 /WSe 2 单层”沉积,用于计量、太赫兹和光电探测器设备。
原子层面的磁相互作用在磁性中起着核心作用。近年来兴起的二维范德华 (vdW) 磁性材料由于其高结晶性、可调性以及可研究不同厚度的可能性,为研究磁相互作用提供了可能性[1,2],其中晶格特性可通过多种具有空间分辨率的探针轻松获取,如扫描探针和拉曼光谱[3-5]。磁相互作用最重要的指标之一是居里温度 (TC)。出于提高 TC 的实际动机,磁相互作用与 TC 之间的关系在 vdW 磁体中得到了广泛的研究。例如,通过电门控(特别是在场效应晶体管的结构中)研究了磁相互作用与电子结构和载流子浓度的变化,这改变了 Cr 2 Ge 2 Te 6 局部磁系统的磁滞曲线,而 TC 没有任何显著变化,而对于类似结构的 Fe 3 GeTe 2 流动磁系统,TC 从 205K 升高到室温以上 [6, 7]。从历史上看,
ARCI 希望聘用才华横溢的候选人,他们应一贯学业优秀,对创新研究有着强烈的热情和动力,能够在与先进材料(如稀土磁性材料、工程涂层、清洁能源材料、钠/锂离子电池技术等)相关的各个新兴领域参与有时限的赞助/内部项目。 RA/JRF/SRF/项目人员的选拔流程:将基于对入围候选人的个人面试。 JRF/SRF 注册外部博士学位课程:根据候选人的表现,还将鼓励选定的 JRF/SRF 候选人在与 ARCI 有合作关系的知名学院(IIT/NIT)/海得拉巴中央大学之一注册博士学位课程。获得 ME/M.Tech./MS 或 M.Sc. 学位的候选人将有更好的机会注册外部博士学位,而获得 BE/B.Tech 学位的候选人则有更好的机会注册外部博士学位。或同等学历的学生注册外部博士学位的机会将受到限制。
