[5]郭,Yuan等。基于“尺寸调制工程”降低低频微波吸收的促进导电损耗和磁耦合。Small,2023,E2308809。[6] Li,Shuangshuang等。基于石墨烯的磁复合泡沫,具有分层多孔结构,可有效地吸收微波。碳,2023,207:105-115。[7] Zhang,X。等。金属离子被限制在MOF的周期性孔中,以嵌入层次多孔碳纳米流中的单金属原子,以进行高性能电磁波吸收。高级功能材料,2023,33,2210456。[8] Zhu,J等。基于多元素异质组件的多孔结构纤维,用于优化电磁波吸收和自我抗腐蚀性能。Small,2024,240368。[9] Deng,Y。等。 一种新颖而便捷的到合成的三维蜂窝状 - 像纳米-FE 3 O 4 @C复合材料:电磁波吸收宽,带宽宽。 碳,2020,169:118-128。 [10] Meng,X。等。 三维(Fe 3 O 4 /ZnO)@C双核@shell多孔纳米复合材料具有增强的宽带微波吸收。 碳,2020,162:356。 [11] Hu,R。等。 在熵驱动的双磁系统中增强了电磁能量,用于上电磁波吸收。 高级功能材料,2024,2418304 [12] Li,Xiao等。 碳,2023,210(15):118046。 [13] Li,S。等。 碳,2023,207:105-115。 [14] Yang,W。等。[9] Deng,Y。等。一种新颖而便捷的到合成的三维蜂窝状 - 像纳米-FE 3 O 4 @C复合材料:电磁波吸收宽,带宽宽。碳,2020,169:118-128。[10] Meng,X。等。三维(Fe 3 O 4 /ZnO)@C双核@shell多孔纳米复合材料具有增强的宽带微波吸收。碳,2020,162:356。[11] Hu,R。等。在熵驱动的双磁系统中增强了电磁能量,用于上电磁波吸收。高级功能材料,2024,2418304 [12] Li,Xiao等。碳,2023,210(15):118046。[13] Li,S。等。碳,2023,207:105-115。[14] Yang,W。等。磁阵列垂直锚定在具有“魔法角”的柔性碳布上,以增加有效的吸收带宽并同时改善反射损失。基于石墨烯的磁复合泡沫,具有分层多孔结构,可有效地吸收微波。磁耦合工程的多孔介电碳在超大填充物中,朝向可调和高性能的微波吸收。材料科学技术杂志,2021,70:214-223。[15] Pang,X。等。基于石墨烯,碳纳米管和Fe 3 O 4多维复合材料的电磁吸收特性的优化。聚合物组合,2024,45(9):8414-8425。[16] Zhao,Y。等。在CNT@NICO化合物中同时优化传导和极化损失,以吸收上电磁波吸收。材料科学技术杂志,2023,166:34-46。
强关联过渡金属氧化物因其各种奇异现象而广为人知。稀土镍酸盐(如 LaNiO 3)就是一个典型例子,它们的电子、自旋和晶格自由度之间具有紧密的互连。将它们配对成混合异质结构可以进一步增强其特性,从而产生隐藏相和突发现象。一个重要的例子是 LaNiO 3 /LaTiO 3 超晶格,其中已经观察到从 LaTiO 3 到 LaNiO 3 的层间电子转移,从而导致高自旋状态。然而,迄今为止尚未观察到与这种高自旋状态相关的宏观磁序出现。本文利用 μ 子自旋旋转、X 射线吸收和共振非弹性 X 射线散射,直接证明了在 LaNiO 3 /LaTiO 3 界面上出现了具有高磁振子能量和交换相互作用的反铁磁序。由于磁性是纯界面性的,单个 LaNiO 3 /LaTiO 3 界面本质上可以表现为原子级薄的强关联准二维反铁磁体,有可能在先进的自旋电子器件中实现技术应用。此外,其强准二维磁关联、轨道极化平面配体空穴和分层超晶格设计使其电子、磁性和晶格结构类似于超导铜酸盐和镍酸盐的前体态,但具有 S → 1 自旋态。
1个网络科学技术学校,北京大学,北京100191,中国。2北京大学北京大学电子和信息工程学院,中国。3中国科学院物理研究所北京国家凝结物理实验室,中国北京100190。4材料科学与光电工程中心,中国科学院,北京100049,中国。5 Zhangjiang实验室,20120年上海,中国。6 Songshan Lake Materials Laboratory,Dongguan 523808,中国广东。 7物理和应用物理学,新加坡Nanyang Technological University的物理和数学科学学院,新加坡637371。 8上海大学上海大学物理科学技术学院,2011年,中国。6 Songshan Lake Materials Laboratory,Dongguan 523808,中国广东。7物理和应用物理学,新加坡Nanyang Technological University的物理和数学科学学院,新加坡637371。8上海大学上海大学物理科学技术学院,2011年,中国。8上海大学上海大学物理科学技术学院,2011年,中国。
早期,提出了QSL的几何沮丧的三角形晶格,并通过与苯环5中的谐振电子键相似的旋转的共鸣价键进行了概念化。随后将这种共鸣的价值键图应用于Cuprate高温超导体,作为强电子配对6的来源。尽管众所周知,QSL状态由于磁性挫败感而出现,但很难在现实的模型中稳定它们,更不用说实际的材料了。在2006年,通过引入一个可解决的模型,称为Kitaev模型,在Honeycomb晶格7上具有QSL基态,从而做出了开创性贡献。在此模型中,最近的邻氏旋转由不同的(x,y或z)组件耦合,具体取决于连接它们的键的方向(三种键型x,y和z的键在图中标记了不同的颜色1 a):