图3。水溶液中珠与DNA比对碎片恢复的影响。 为了确定不同的珠与DNA比对DNA片段尺寸选择的影响,将DNA尺寸梯子稀释至总体积为50 µL,并与各种体积的QIASEQ珠子从25 µL(0.5倍)到75 µL(1.5x)孵育。 在室温下DNA结合5分钟后,将管子放在磁性台上,再将溶液清除为止。 接下来,将上清液丢弃,并用200 µl 80%乙醇洗涤两次珠子。 在最终的乙醇洗涤后,除去上清液并将磁珠完全干燥。 将沉淀在6 µL缓冲液EB中洗脱。 在Agilent生物分析仪高灵敏度芯片上分析了等分试样(1 µL)以及未覆盖的尺寸梯子(参考阶梯)。 (a)片段定量。 (b)片段分布的百分比与参考相比。水溶液中珠与DNA比对碎片恢复的影响。为了确定不同的珠与DNA比对DNA片段尺寸选择的影响,将DNA尺寸梯子稀释至总体积为50 µL,并与各种体积的QIASEQ珠子从25 µL(0.5倍)到75 µL(1.5x)孵育。在室温下DNA结合5分钟后,将管子放在磁性台上,再将溶液清除为止。接下来,将上清液丢弃,并用200 µl 80%乙醇洗涤两次珠子。在最终的乙醇洗涤后,除去上清液并将磁珠完全干燥。将沉淀在6 µL缓冲液EB中洗脱。在Agilent生物分析仪高灵敏度芯片上分析了等分试样(1 µL)以及未覆盖的尺寸梯子(参考阶梯)。(a)片段定量。(b)片段分布的百分比与参考相比。
收稿日期:2003 年 11 月 28 日 / 接受日期:2003 年 12 月 12 日 / 发表日期:2003 年 12 月 18 日 摘要:本文介绍了我们实验室设计和实现的高精度磁通门磁传感器及其在军事和空间系统中的应用。在军事应用中,传感器用于地面未爆炸弹药定位系统,其中将介绍两个不同的项目。该传感器还用于实现捷克新科学卫星 MIMOSA 的精确磁通门磁强计。关键词:磁通门传感器、磁通门磁强计、军事系统、空间系统 ________________________________________________________________________________ 1.简介 虽然磁通门传感器不是最灵敏的磁传感器,但它们仍然是高灵敏度和高精度磁测量应用中最流行的传感器,例如地球磁场和行星际场的研究以及军事应用 [1]。它们之所以受欢迎,是因为它们具有高线性度、在相对较宽的温度范围内具有良好的稳定性,并且具有良好的抗交叉场效应和抗高磁场冲击能力 [2]。近几年来,AMR 和 GMR 磁传感器的灵敏度已达到与磁通门传感器相当的水平 [3],但它们的温度和长期不稳定性使它们仅适用于性能较低的应用 [4]。磁通门传感器大多在反馈配置下运行,因此它们的动态范围可以轻松达到 130 dB,线性误差小于 10 ppm。由此可以看出,传感器接口的正确设计和实际实现也非常重要。
当今世界对清洁能源的需求超过了供应。这使得清洁能源(如聚变)越来越受到决策者、投资者和广大公众的关注。原则上,聚变每千克燃料产生的能量是裂变的四倍,是燃烧石油和煤炭的近四百万倍。目前国际社会对这种清洁能源的承诺水平使我们更接近聚变能源。一个典型的例子是 ITER,它是世界上最大的聚变实验,它联合了来自 35 个国家的科学家,旨在实现自持聚变反应并展示可观的能量增益。建设正在进行中,一旦完成,ITER 有望开启聚变能源发展的下一阶段,示范聚变发电厂(称为 DEMO)旨在首次从聚变中发电。国际原子能机构处于 DEMO 开发的前沿,促进国际协调并分享世界各地项目的最佳实践。国际原子能机构鼓励对 DEMO 的讨论,并推动广泛的国际对话,以克服高度技术挑战并使聚变能成为现实。国际原子能机构出版的科学期刊《核聚变》见证了该组织对聚变研究的承诺。它是世界上历史最悠久、最权威的聚变期刊。该出版物是对之前发行的《聚变物理学》的补充,描述了磁聚变技术的广泛领域,从等离子体加热和电流驱动到聚变中子学和材料和组件,再到真空泵送和燃料,再到氚处理和氚工厂。
Exxelia 是一家复杂无源元件和精密子系统制造商,专注于高要求的终端市场、应用和功能。Exxelia 产品组合包括各种电容器、电感器、变压器、电阻器、滤波器、位置传感器、滑环和高精度机械零件,服务于航空航天、国防、医疗、铁路、能源和电信等众多领先的工业领域。
磁感应正在成为一种支持各种应用的新兴技术。代表性用例包括高精度姿势跟踪、人机交互和触觉感应。该技术使用多个 MEMS 磁力计来捕捉近距离变化的磁场。然而,磁力计易受现实世界干扰,如硬铁和软铁效应。因此,用户需要频繁执行繁琐而冗长的校准过程,严重限制了磁跟踪的可用性。为了消除/减轻这一限制,我们提出了 MAGIC(磁力计自动校准),这是一个系统框架,可自动校准 MEMS 磁力计阵列的软铁和硬铁干扰。为了最大限度地减少用户干预的需要,我们引入了一个新颖的自动触发模块。与传统的手动校准方法不同,MAGIC 以最少的用户注意力实现了卓越的校准性能(例如,用于跟踪应用)。通过实证研究,我们发现 MAGIC 也会产生边际开销和成本,例如总能源成本为 0.108 J。
神经元产生电信号,通过突触传输到其他细胞。首先,动作电位 (AP) 到达突触间隙(图 1 中的步骤 1),在那里它将通过神经递质传输化学信息(图 1 中的步骤 2),从而产生突触后电位 (PSP) 和局部电流(图 1 中的步骤 3)。PSP 将产生电流接收器并传播直到细胞体以产生电流源(图 1 中的步骤 4)。因此,PSP 会产生一个由负极(即接收器)和正极(即源)组成的电偶极子。该偶极子将产生初级(细胞内)电流和次级(细胞外)电流。M/EEG 信号来自突触后电位。更具体地说,M/EEG 信号来自大量同步神经元活动的空间和时间总和。但 MEG 和 EEG 之间存在显著差异。首先,就信号本身而言,MEG 信号主要由树突水平的 PSP 产生的细胞内电流引起,细胞外电流较少;EEG 信号对应于电位差,主要由细胞外电流引起。其次,就对偶极子方向的敏感性而言,EEG 对径向电流(位于脑回水平的活动)和切向电流(在脑沟内产生)都很敏感,尽管它具有
I. 总结 3 II. 介绍:3 II.1 宏观系统视角 3 II.2 新范式的必要性:5 II.3 计算中的能源效率 6 II.4 机遇 7 II.5 能源消耗的关键作用 8 III. 多铁性和磁电性 10 III.1 磁电耦合的对称性和基本原理 11 III.2 多铁性和磁电材料 11 III.3 创建多铁性和磁电材料的途径 12 III.4 作为模型多铁性的铋铁氧体 13 III.5 铋铁氧体中的化学取代 16 III.6 化学和弹性相平衡 17 III.7 其他物理现象 19 III.8 理论研究 20 III.9 多铁性中的畴和畴壁 21 IV.磁电耦合 24 IV.1 磁电耦合和异质结构 24 IV.2 混合磁态和纳米复合材料的电场控制 29 IV.3 通过界面交换耦合实现磁取向的电场控制 31 IV.4 磁态的电场控制 33 V. 基于多铁性的超低功耗逻辑存储器设备 34 VI. 高频应用 38 VII. 挑战与机遇 38 VIII. 致谢 41 IX. 参考文献 42