适当的防磨装置保护可减少磨损和伤害。如果没有防磨装置,绳索可能会过度磨损和切断;这反过来会导致绳索强度下降并最终失效。为了妥善保护系泊绳索,应在绳索可能与粗糙表面摩擦的区域安装足够长度的防磨装置。应持续监测防磨装置的位置,以确保装置在涨潮和退潮间隔以及恶劣天气期间保持原位并有效。
Onitsuka,Shugo Advanced Energy Materials,国际碳中性能源研究所,京都大学Onitsuka,Shugo Advanced Energy Materials,国际碳中性能源研究所,京都大学
滑动表面之间的摩擦和磨损可能会导致工业应用中的各种问题,例如成本增加,机器寿命降低,功能丧失,能源损失和系统效率降低。为了减轻这些问题,通常使用润滑剂和涂料。本研究旨在使用阻塞 - 环磨损试验研究涂料和润滑对摩擦系数,磨损体积损失和润滑温度的影响。评估了不同涂层(未涂层,DLC,CRN和TiALN)和润滑剂(抗跨氧化石墨烯氧化石化添加剂和强纳米发动机油添加剂)的有效性。在不同的载荷(6-60 N),速度(1450 rpm),润滑剂体积(40毫升)和持续时间(2-20分钟)下进行阻滞测试。使用内联载荷电池测量摩擦系数,通过称重实验前后的块确定磨损体积损失,并使用热电偶对润滑剂温度进行监测。结果表明,摩擦系数随着载荷的增加而降低,而润滑剂温度升高。涂层块与未涂层的块相比表现出较低的磨损量损失。总体而言,CRN涂层块和抗旋转石墨烯氧化物添加剂的组合表现出最佳的摩擦学性能。
病例钢钢通常用于齿轮和轴承应用。这类材料的低碳含量可为不同生产技术(如形成,锻造和焊接)提供出色的加工性。但是,低碳含量限制了这组材料的可靠性。一种特殊的热处理被称为病例硬化,对于提高这些材料的可耐用性是必要的。这种热处理是化石或硝化的,然后进行了亚分化的强化操作以改善表面硬度。渗碳的局限性是该过程耗时,薄壁的零件可能会变形[1]。长时间的时间使这个过程不吸引小批量尺寸的织物。此外,发现仅马氏体结构在材料的耐磨性方面不利[2]。说到耐磨性,仅产品的磨损可能导致多达全国国内生产总值的4%的经济成本[3]。低合金钢的病例硬化主要导致马氏体微观结构,因为几乎所有碳都在马氏体内捕获[4]。调节这些产品通常是为了改善工件的延展性。关于耐磨性,诸如碳化物之类的次级阶段比单纯的马氏体微观结构更优选。为了形成碳化物(VC)或碳化钨(WC)等碳化物,需要超过500℃的高温温度[5]。但是,这些形成碳化物的元素通常不存在或仅在病例钢钢内以较小的比率存在。它们的缺席阻碍了次级碳化物的降水的影响,从而限制了最终部分的耐磨性。因此,需要替代仅碳增强的替代方案,以进一步改善病例钢钢的部分。基于激光的定向能量沉积(DED-LB/M)Pro-VIDESA有望altertantiveto病例硬化,用于调整产品的表面硬度[6]。DED-LB/M中的灵活处理允许生成三维结构,修复磨损的表面或沉积耐磨性覆盖层到高度载荷的表面上。由于可以同时使用DED-LB/m同时使用多种粉末材料,因此可以局部调整最终工件的化学成分[7]。这种高灵活性打开了在需要的情况下在具有量身定制特性的自由形式表面上涂上涂料的可能性。应用的一个潜在领域是将渗碳产品代替仅以小批量制造的大零件。这样做,可以进行长时间的固定时间。DED-LB/M维修应用程序的巨大潜力也使当地磨损的配件进行翻新。使用DED-LB/M进行维修应用,需要产生具有与先前碳液材料相似的材料硬度的硬表面。知道只有固定钢的马氏体硬化产品的前提不利,可以添加进一步的合金元素,以提高关键特性,例如耐磨性或硬度。结合了例如,钨可以帮助改善固醇溶液加强以及高温耐药性的材料的性质[8]。
图 2:(a) 316L+20%WC 复合材料的 SEM 显微照片。部分溶解的 WC 碳化物(亮圆圈)均匀分散在增强基质中。(b) (a) 的特写视图,显示了部分溶解的 WC 碳化物(浅灰色)的紧邻区域以及由凝固碳化物组成的网络。(c) (a) 的另一个特写视图,重点关注熔池和 HAZ 之间的过渡及其各自的凝固碳化物。
经常更换磨损的铁轨在轨道上带来了巨大的经济负担,这也引起了铁路运营的重大干扰。通过激光粉末沉积(LPD)恢复磨损的导轨可以大大降低相关的维护成本。这项研究的重点是使用LPD来修复标准美国铁路的破产。最小硬度为85 hrb的304L不锈钢沉积物的微观结构由奥氏体,d -frerite和Sigma组成。微孔分散在整个沉积物中,并在轨道沉积界面上发现了微裂纹。珠光体导轨底物的中度硬度为94 hrb。珠粒,珠光皮热影响区的最大硬度为96 hrb,对于典型的导轨仍低于97 hrb的最小硬度。要增加硬度或以上97 HRB并减轻微结构缺陷,AS修复的导轨进行了热处理过程。AS处理的导轨的平均硬度显着增加,即103 hrb。此外,将多孔和粗粒沉积材料转化为可渗透和细粒度的微观结构。然而,热处理加强了轨道沉积界面的微裂纹,并导致了马氏体形成并增加了父轨中的微孔。在热处理和预热期间,基本导轨的隔离为有问题结果的解决方案。最终发现LPD过程是修复导轨的有前途的技术。2021 Tongji大学和Tongji大学出版社。 Elsevier B.V.的发布服务 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。2021 Tongji大学和Tongji大学出版社。Elsevier B.V.的发布服务这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
本备忘录提出了IFU的方法和利用,以管理IFU投资中太阳能电池板供应链中使用的强迫劳动风险。背景太阳能电池板对于安装可再生能源并在全球范围内以及在发展中国家中支持绿色过渡。,但人们一直担心许多太阳能电池板包含通过使用强制劳动提供的原材料。2021年1月8日,《纽约时报》根据美国公司Horizon Advisory的一份报告发表了一条第1条,该报告指出,在新疆地区中国生产的石英和冶金级硅(MG-SI)是借助强制劳动的帮助。关键问题是,在新疆地区,乌格尔人和土著群体以及宗教少数群体都受到与拘留营,再教育和其他侵犯人权行为有关的强制性劳动计划。2今天,全球太阳能部门在很大程度上取决于中国。几乎所有生产的太阳能电池都是在中国生产的,要么包含来自中国的原材料。此外,太阳能电池板的供应链很复杂,并且在Poylyilicon的生产到最终太阳能电池板上至少包括七个阶段。主要是在供应链的早期阶段使用强迫人工的使用,这使得太阳能电池板购买者很难获得适当的外观,并记录了组成太阳能电池板的不同原料和组件的起源。迄今为止,强迫劳动的指控主要影响了太阳能行业。此外,太阳能电池板购买者没有直接的合同能力在采矿和处理地点进行审计,或者审查所有供应链参与者,因为太阳能电池板的购买是距合同方的几个步骤。但是,太阳能购买者可以做的是评估其供应链中强迫劳动的风险,并在避免,最小化或减轻它们并实施后续行动方面对这些风险采取行动。但是,其他行业也可能会受到更大的审查,因为它们也取决于石英,冶金级硅和多硅菌,这可能起源于新疆地区。
使用金属粉末原料的基于激光的直接能量沉积 (DED) 系统被认为是一种有前途的制造方法,因为它们能够缩短生产周期并制造复杂的零件几何形状。通过在同轴注入材料并使其凝固的同时用高功率激光束产生熔池来构建组件。大规模使用 DED 的障碍在于粉末收集效率差,在这种情况下,一部分注入的粉末会逸出熔池,导致打印材料质量与供应原料质量之比下降。已经观察到混合制造机床内 DED 系统上同轴喷嘴的磨损状态会随着时间的推移降低收集效率。本研究通过将流动可视化技术应用于现场过程监控格式、实施计算流体动力学 (CFD) 模拟和沉积测试来调查这种影响。识别和分类由于磨损而导致的喷嘴几何缺陷,并通过多种计算方法证明喷嘴尖端磨损(导致轴向尖端减少)对粉末收集效率的影响。发现集料效率与粉末流直径之间存在线性相关性,导致喷嘴尖端逐渐减小至 -1 毫米时效率损失 15-20%。这些结果为进一步研究粉末进料 DED 系统的磨损效应和零缺陷制造解决方案奠定了基础。
开发了一种新型混合熔覆工艺,通过结合直接能量沉积 (DED) 和超声纳米晶体表面改性 (UNSM) 来控制内层金属熔覆层的力学性能。混合工艺允许操纵熔覆层的内部和外部力学性能,以获得所需的表面和体积性能。为了验证该方法的有效性,对 Inconel-718 熔覆层在 200 和 400 C 高温下进行了耐磨性试验,并证实耐磨性分别提高到 25.4% 和 14.4%。这项工作分析了 DED 工艺中有无 UNSM 处理的耐磨特性。所提出的方法是改变熔覆层内部力学性能的一种有前途的方法,具有很高的可控性和可重复性。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
本研究通过在正常大气条件下使用销盘磨损试验机进行磨损试验,分析了 Mg-TiO 2 纳米复合材料的干滑动磨损行为。试验期间考虑的工艺参数是 TiO 2 纳米颗粒的重量分数、法向载荷和滑动速度。试验期间,滑动距离和磨损轨道直径分别保持恒定在 1500 m 和 90 mm。性能指标是累积磨损和摩擦系数。本研究采用基于田口的灰色关联分析来优化纳米复合材料的磨损行为。本研究中考虑的实验设计是 L9 正交阵列,每个工艺参数分为三个级别。计算每个实验的灰色关联度 (GRG),发现工艺参数组合 A3B2C1 获得的最大 GRG 为 0.825,分别对应于 5wt% TiO 2、1 kg 法向载荷和 1.5 m/s 滑动速度。将初始估算的 GRG 与最佳工艺参数的预测值和实验值进行比较,发现 GRG 分别提高了 2.2% 和 0.77%。进行方差分析 (ANOVA) 以估计对纳米复合材料的磨损行为有显著影响的工艺参数,随后得出结论,除其他因素外,工艺参数法向载荷是最重要的因素。
