额定排放电流10A最大排放电流20A最大值脉冲电流60a(<3s)排放截止电压10V电荷温度为0°C至45°C(32fto 113f) @60±25%相对湿度排放温度-20°C至60°C(-4F至140F) @60±25% @60±25%相对湿度存储温度0°C至40°C(32fto) @60°C(32fto 104f)
溃疡性结肠炎 (UC) 和克罗恩病 (CD) 是影响胃肠道的慢性炎症性疾病,通常需要终生治疗。从历史上看,这些诊断的预后不佳,但人们对疾病过程的理解以及治疗方法都有了显着的改善。虽然仍然没有治愈性疗法,但药物治疗的主要内容是使用免疫抑制和免疫调节来诱导缓解和改善生活质量。1990 年代后期抗肿瘤坏死因子 (TNF) 疗法的引入彻底改变了药物治疗领域。在英夫利昔单抗首次获批后,多种静脉和皮下生物制剂加入了医疗设备库。 1-3 2021 年 5 月,奥扎尼莫德 (Zeposia,百时美施贵宝) 成为美国食品药品监督管理局 (FDA) 批准的首个用于治疗中度至重度活动性 UC 的鞘氨醇-1 磷酸 (S1P) 受体调节剂。4 本文讨论了 S1P 受体调节疗法的作用机制、疗效和安全性,并考虑了它们在治疗 UC 患者中的适当定位。
纳米复合材料是由两个或多个组成部分组成的复合材料,其中至少应为纳米级。这些材料由于其大小和结构而提供了独特的特性[1]。纳米级成分通常与大规模的材料(例如聚合物,陶瓷或金属)结合使用,以创建具有与单个成分相比具有优质特性的材料[2]。纳米复合材料已用于各种应用,例如电子,航空航天,生物医学和能量[3]。在研究论文中,纳米复合材料的研究是彻底改变现有技术或完全启用新技术[4]。TIO 2纳米复合材料是将二氧化钛(TIO 2)与其他材料(例如聚合物,金属或半导体)相结合的纳米材料,以创建具有增强性能的材料。作为Tio 2是一种易于适用的化学物质,这些纳米复合材料适用于高折射率,高化学
摘要双酚在食品和环境系统中广泛保留。少量的双酚A可以直接影响人类健康。然而,双足A的最近比色检测方法仍然符合诸如复杂操作和高盐溶液的影响等挑战,从而导致不准确的检测结果。在此,Ag 3 PO 4纳米颗粒是通过简单的共沉淀方法制备的,并且具有出色的漆酶模拟催化活性。在Ag 3 PO 4纳米颗粒的催化作用下,双酚A失去了电子,并与4-氨基 - 抗吡啶进一步反应形成红色物质。因此,首先基于模仿AG 3 PO 4纳米颗粒的漆酶活性来建立一种新型的双酚的快速比色方法。比色法的检测限制为低至0.222 mg·L -1,该限制低于中国国家卫生和计划生育委员会和美国食品和药物管理局。此外,比色方法对其他竞争目标表现出极好的选择性。进一步的研究证实了比色方法在实际食品和水样品中检测双酚A的准确性,可靠性和速度,这表明这种比色方法在实际应用中可能至关重要。
摘要。三元锂电池(TLB)和磷酸锂电池(LIPB)是当前电池市场中两种流行的电池类型。他们在性能和应用领域中具有自己的优势和缺点。通过分析两种类型的电池的结构,性能和应用,可以看出,TLB的阳极是具有高能量密度,强大的快速充电能力和出色的低温放电性能的八面体结构。阳极材料中镍,钴和锰的不同比率适用于多种未使用的场合。但是,TLB的高温稳定性很差,在高温下很容易发生热失控,并且它们的循环寿命相对较短。LIPB以其高安全性,较长的周期寿命和相对较低的成本而闻名。其独特的橄榄石晶体结构和稳定的P-O共价键具有出色的热稳定性,即使在高温下,电池也不容易分解。LIPB的缺点主要反映在其较低的能量密度和低温放电性能中。结合两种材料的优势来开发具有高能量密度和高安全性的新电池材料将是未来的重要研究方向。
摘要 肝糖异生增加被认为是导致非胰岛素依赖型糖尿病 (NIDDM) 患者空腹血糖升高的一个重要因素。磷酸烯醇式丙酮酸羧激酶 (GTP) (PEPCK;EC 4.1.1.32) 是一种糖异生调节酶。为了研究 PEPCK 基因表达在 NIDDM 发展中的作用,我们培育了转基因小鼠系,这些小鼠在其自身启动子的控制下表达 PEPCK 微基因。转基因小鼠血糖升高,血清胰岛素浓度较高。此外,还检测到肝糖原含量和肌肉葡萄糖转运蛋白 GLUT-4 基因表达的变化。PEPCK 基因的过度表达导致原代培养肝细胞中丙酮酸产生葡萄糖增加。当进行腹膜内葡萄糖耐量测试时,血糖水平高于正常小鼠的血糖水平。该动物模型显示肝脏葡萄糖生成率的原始改变可能导致胰岛素抵抗和 NIDDM。
生物正交磷。自那时以来,磷酸探针已被用于标记叠氮化物功能化的生物分子。Staudinger连接还为开发其他基于磷的化学物质的发展铺平了道路,其中许多化学物质广泛用于生物学实验中。几项评论突出了生物正交磷的设计和应用中的早期成就。本评论总结了该领域的最新进展。我们讨论了经典的类似Staudinger的转型的创新,这些转型使新的生物学追求。我们还强调了对生物正交阶段的相对新移民,包括环丙酮 - 磷酸结扎和磷酸磷酸反应。审查以涉及磷酸盐和磷酸盐结扎的化学选择性反应结束。对于每个转换,我们描述了整体机制和范围。我们还展示了为特定功能微调试剂的努力。我们进一步描述了化学物质在生物环境中的最新应用。总的来说,这些例子强调了生物正交膦试剂的多功能性和广度。
抽象的磷酸锌碱基腐蚀抑制剂,旨在确定抑制剂为碳钢提供保护的有效性,以防止腐蚀速率,在0、20、40和60 ppmm的抑制剂浓度方面的变化,这项研究使用了重量损失方法,并研究了通过培养基水和磷酸盐磷酸盐抑制剂的性能,并研究了水,水和pd的水平,并在水中进行水,并在水中进行水,seal sealisting sealisting水,pdam sealisting seal,pdam sealistor seal,pdam的水,pdam sealistor sc.电子显微镜)测试。该研究中使用的钢试样类型是碳钢,深腐蚀介质是冷却水,海水和PDAM水。添加磷酸锌碱基碳钢抑制剂有效地降低了PDAM水和海水中碳钢的腐蚀速率。在没有抑制剂的海水培养基中,从119.0457 MPY到1.7754 MPY和没有抑制剂的PDAM水培养基中,腐蚀速率的急剧降低,从18.5873 MPY到3.4163 MPY添加了抑制剂,腐蚀速率急剧降低。磷酸锌基抑制剂在冷却水腐蚀培养基中的效率为30.262%,浓度为40 ppm,浸泡时间为20天。关键字:抑制效率,腐蚀抑制剂,海水腐蚀,
通过湿过程生产磷酸,其中磷酸盐被矿物酸溶解,经常提供不可避免地包含几种杂质的产物。其中一些元素不利于酸在肥料或食品工业中的最终用途。在这些杂质中,人们可以找到镉的最终含量在肥料中的最终含量取决于原材料的类型和化学合成途径。因此,必须纯化湿磷酸(WPA)。本综述比较并分析了从WPA中去除镉的不同工业过程,从溶剂提取开始,这始终是该领域最广泛使用的技术,但是降水量,离子交换,吸附,浮选,甚至是最近可能成为相关替代方案的最新膜过程。比较了镉去除技术的效率,并讨论了它们的优势和局限性。本综述还提供了有关H 3 PO 4 /H 2 O系统的热力学建模的见解,并比较了当前模型预测热力学特性的能力,包括渗透系数和物种,以广泛的磷酸浓度。此外,还使用生命周期评估和可用成本数据来评估WPA产生的成本和环境影响,这表明热磷酸在经济和环境上仍然比纯化的WPA更繁重。