通过湿过程生产磷酸,其中磷酸盐被矿物酸溶解,经常提供不可避免地包含几种杂质的产物。其中一些元素不利于酸在肥料或食品工业中的最终用途。在这些杂质中,人们可以找到镉的最终含量在肥料中的最终含量取决于原材料的类型和化学合成途径。因此,必须纯化湿磷酸(WPA)。本综述比较并分析了从WPA中去除镉的不同工业过程,从溶剂提取开始,这始终是该领域最广泛使用的技术,但是降水量,离子交换,吸附,浮选,甚至是最近可能成为相关替代方案的最新膜过程。比较了镉去除技术的效率,并讨论了它们的优势和局限性。本综述还提供了有关H 3 PO 4 /H 2 O系统的热力学建模的见解,并比较了当前模型预测热力学特性的能力,包括渗透系数和物种,以广泛的磷酸浓度。此外,还使用生命周期评估和可用成本数据来评估WPA产生的成本和环境影响,这表明热磷酸在经济和环境上仍然比纯化的WPA更繁重。
简介:线粒体是心脏的中央能量发生器,通过氧化磷酸化 (OXPHOS) 系统产生三磷酸腺苷 (ATP)。然而,线粒体还指导关键细胞决策和对环境压力源的反应。方法:本研究评估了长期电磁压力是否会影响线粒体 OXPHOS 系统和心肌的结构改变。为了诱发长期电磁压力,小鼠暴露于 915 MHz 电磁场 (EMF) 28 天。结果:对暴露于 EMF 的小鼠的线粒体 OXPHOS 容量的分析表明,复合物 I、II、III 和 IV 亚基的心脏蛋白表达显著增加,而 ATP 合酶 (复合物 V) 的 α 亚基的表达水平在各组之间保持稳定。此外,使用 Seahorse XF24 分析仪测量分离的心脏线粒体的呼吸功能表明,长时间的电磁应力会改变线粒体的呼吸能力。然而,与对照组相比,暴露于 EMF 的小鼠血浆中丙二醛(氧化应激指标)的水平和心肌线粒体驻留抗氧化酶超氧化物歧化酶 2 的表达保持不变。在左心室的结构和功能状态下,在受到电磁应力的小鼠的心脏中未发现任何异常。讨论:总之,这些数据表明长时间暴露于 EMF 可能通过调节心脏 OXPHOS 系统影响线粒体的氧化代谢。
背景:阿尔茨海默氏病的特征是异常的β-淀粉样蛋白(Aβ)斑块积累,TAU高磷酸化,反应性氧化应激,线粒体功能障碍和突触损失。甲霉素是一种饮食类黄酮,已显示出在体外和体内发挥神经保护作用。在这里,我们旨在阐明米他汀保护作用所涉及的机制和途径。方法:对Myricetin的作用进行了对β42低聚物处理的神经元SH-SY5Y细胞和3×TG小鼠的作用。行为测试,以评估3×TG小鼠中典型素(14天,IP)的认知作用。通过蛋白质印迹评估了β-淀粉样蛋白前体蛋白(APP),突触和线粒体蛋白,糖原合酶激酶三酶3β(GSK3β)和细胞外调控激酶(ERK)2的水平。流式细胞仪测定,免疫荧光染色和透射电子显微镜用于评估线粒体功能障碍和反应性氧化应激。结果:我们发现,与对照治疗相比,三×TG小鼠的迈他汀治疗改善了空间认知,学习和记忆。myricetin在β42低聚物处理的神经元SH-SY5Y细胞以及3×TG小鼠中改善tau磷酸化以及突触前和突触后蛋白的降低。此外,米他素还减少了活性氧的产生,脂质过氧化和DNA氧化,并通过相关的GSK3β和ERK 2信号通路营救了线粒体功能障碍。结论:这项研究为细胞培养和体内的阿尔茨海默氏病小鼠模型中的细胞培养和体内的神经保护机理提供了新的见解。
旁系同源物 CUL 4 A 和 CUL 4 B 组装 cullin-RING E 3 泛素连接酶 (CRL) 复合物,调节多种染色质相关的细胞功能。尽管它们结构相似,但我们发现 CUL 4 B 独特的 N 端延伸在有丝分裂期间被大量磷酸化,而磷酸化模式在导致 X 连锁智力残疾 (XLID) 的 CUL 4 BP 50 L 突变中受到干扰。表型表征和突变分析表明,CUL 4 B 磷酸化是有效进行有丝分裂、控制纺锤体定位和皮质张力所必需的。虽然 CUL 4 B 磷酸化触发染色质排斥,但它促进与肌动蛋白调节剂和两个以前未被认识的 CUL 4 B 特异性底物受体 (DCAF) LIS 1 和 WDR 1 的结合。事实上,共免疫沉淀实验和生化分析表明 LIS 1 和 WDR 1 与 DDB 1 相互作用,并且 CUL 4 B 的磷酸化 N 端结构域增强了它们的结合。最后,人类前脑类器官模型表明 CUL 4 B 是形成与前脑分化开始相关的稳定脑室结构所必需的。总之,我们的研究发现了以前未被发现的与有丝分裂和大脑发育相关的 DCAF,它们通过磷酸化依赖机制特异性结合 CUL 4 B,但不结合 CUL 4 BP 50 L 患者突变体。
钛基磷酸钾(KTIOPO 4),通常称为KTP,以其在量子和光学技术中的应用而闻名。这项研究的重点是采用水热和共沉淀方法的KTP纳米晶体的合成,采用草酸作为封盖剂。X射线粉末衍射(XRD)分析证实了正骨KTP晶体的成功合成。傅立叶变换红外(FT-IR)光谱进一步验证了KTP内的键结构,其特征带对应于其在所有光谱中始终观察到的晶体结构。定量分析表明,水热方法产生的KTP纳米颗粒的平均晶粒大小约为35 nm,而共沉淀方法产生的较小的纳米颗粒,平均晶粒尺寸为22 nm。值得注意的是,在水热法中将草酸作为封盖剂的引入将晶粒尺寸降低15%至约30 nm,而在共沉淀法中,它意外地将晶粒尺寸增加了20%,导致纳米颗粒的平均晶粒尺寸为26 nm。此外,与通过热液方法合成的样品(约0.5%)相比,在共同沉淀的样品中发现晶格内的应变更高(约0.8%)。这些发现强调了合成方法和封盖剂对KTP纳米颗粒的大小,形态和结构完整性的重要影响。这种见解对于优化针对光学设备,光子学和量子技术的各种应用量身定制的KTP纳米颗粒的合成至关重要。水热方法显示出在产生较大纳米颗粒的功效,而草酸作为涂料剂的存在在控制晶粒尺寸和增强结构稳定性方面起着关键作用。
1 美国俄亥俄州立大学医学院神经科学系,俄亥俄州哥伦布 43210,美国 2 美国俄亥俄州立大学神经科学研究生课程,俄亥俄州哥伦布 43210,美国 3 美国俄亥俄州立大学校园化学仪器中心,质谱和蛋白质组学设施,俄亥俄州哥伦布 43210,美国 *通讯作者:Andy J. Fischer,美国俄亥俄州立大学医学院神经科学系,3020 Graves Hall, 333 W. 10 th Ave,哥伦布,俄亥俄州 43210-1239,美国。电话:(614) 292-3524;传真:(614) 688-8742;电子邮件:Andrew.Fischer@osumc.edu 缩写标题:视网膜 Müller 胶质细胞中的 S1P 信号传导 页数:67 图表数量:10 表格数量:2 补充图表数量:5 补充表格数量:2 作者贡献:OT 设计并执行实验、收集数据、绘制图表并撰写稿件。ND 和 HE-H 执行实验并收集数据。CG 执行实验、收集数据并撰写稿件。AJF 设计实验、分析数据、绘制图表并撰写稿件。 致谢:我们感谢 Timothy Hla 博士就 S1P 受体的不同激动剂和拮抗剂提出的建议。我们还要感谢俄亥俄州立大学校园化学仪器中心的质谱和蛋白质组学核心所提供的服务。 资金:这项工作得到了 R01 EY032141-03(AJF)的支持。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
在儿童中,骨骼生长和发育主要受磷酸钙稳态控制。大约99%的全身性钙和80%的磷用于形成羟基磷灰石,这是骨支撑的基本成分。在Addition中,电离形式中的少量钙调节质膜的渗透性,起作用的含量和传输刺激的辅助因子。磷酸盐反过来是参与蛋白质磷酸化的细胞内阴离子。它通过高能键(ATP,CAMP)的形成和破裂来实现能量的存储和逐步转换。钙和磷的效应器官是胃肠道,骨骼和肾脏。磷酸钙稳态由甲状旁腺激素(PTH),钙三醇 - 1,25(OH)2 D,磷酸蛋白(如成纤维细胞生长因子(FGF-23))以及降低降钙素[1-3]。效应器官和调节钙代谢的因素之间的序言反应如图1所示,磷酸代谢的调节如图2所示。甲状旁腺激素被甲状旁腺分泌,以响应低钙血症。它刺激肾小管中的钙重吸收,增加骨吸收并抑制其磷酸盐的吸收。它还激活了25-羟基维生素D到钙三醇(1,25二羟基维生素D)的转化。成纤维细胞生长因子23(FGF-23)是由OS-Teocytes产生的,在较小程度上是由成骨细胞产生的。它通过影响依赖钠的磷共转运蛋白(NPTS)来抑制肾小管中的磷酸盐重吸收。FGF-23进一步降低了1α-羟化酶的表达并增加了24-羟化酶的表达,从而降低了循环中1,25(OH)2 d的浓度(图2)[2,3]。钙化三醇,也称为二氢胆石钙酚,这是维生素D 3的最活跃形式,可调节钙和磷酸盐含量。在胃肠道中,它增加了钙
前瞻性陈述出现在此文件中,包括但不限于有关拟议合资企业,合资协议,包括其中包含的预期条款和条件,建造和完成生产设施的构建和完成时间的陈述,估计与生产设施相关的估计资本支出以及在欧洲在电池材料中获得市场领导的意图。前瞻性陈述基于管理层的信念和假设以及当前可用于管理的信息。此类陈述受风险和不确定性的约束,实际结果可能与由于各种因素所致的前瞻性陈述中所示或暗示的结果有重大不同,包括但不限于:估计,预测和