本文的目的是通过深度增强学习对小鼠大脑的基底神经节功能进行建模。众所周知,基底神经节可以提供带有皮质直接影响运动功能的反馈回路。基底神经节中的大多数神经元都是抑制性或多巴胺能。这类似于加强学习的奖励体系。由于几乎不可能对基底神经节的整个应用进行建模,因此本文将重点介绍在迷宫的应用程序中对基底神经节进行建模,其中鼠标在迷宫中,并且需要找到“一块奶酪”(奖励)。这种现实世界的测试通常是在小鼠上进行的,并很好地展示了如何通过增强学习,通过奖励模仿学习[1]。在这种情况下,将在模拟动作方面抽象出其他相关领域(如感觉皮层和运动皮层)的功能和建模。总体而言,通过增强学习对基础神经节的关键功能将是其在行动选择和学习中的用途。
Ganglioside是控制细胞通信中关键功能的膜脂质筏的功能成分。许多病理涉及筏子神经苷,因此代表了开发创新治疗策略的首选方法。首先讨论了一种疾病(而不是),本综述列出了涉及神经毒剂的主要人类病理,包括癌症,糖尿病以及传染性和神经退行性疾病。在大多数情况下,问题是由于蛋白质与神经节的结合会产生病理状况或损害生理功能。然后,我绘制了蛋白质 - 蛋白质相互作用的不同分子机制的清单。我建议将蛋白质的神经节苷脂结合域分为四类,我将其命名为GBD-1,GBD-2,GBD-3和GBD-4。这种结构和功能分类可以有助于合理化能够破坏所选蛋白与神经节的结合而不会产生不良影响的创新分子的设计。在人脑中表达的神经节剂的生化特异性也必须考虑在阿尔茨海默氏病和帕金森氏病的动物模型(或任何无动物替代品)的可靠性。
通过光学显微镜观察 8 名恶性肿瘤患者和 8 名健康对照者的外周血淋巴细胞的中期,检测了自发性染色体脆性。在受试患者中,与对照组相比,自发性染色体脆性的频率明显更高,尤其是在着丝粒染色体区域。特别令人感兴趣的是涉及神经节苷脂、三肽谷胱甘肽 (GSH) 的还原形式和/或肿瘤抑制蛋白 HACE1 的相互作用。在实验室培养的小鼠胚胎 3T3 成纤维细胞、小鼠恶性骨髓瘤细胞以及两种细胞类型的混合培养物的实验体外模型提取物中神经节苷脂和抗神经节苷脂抗体的平均滴度之前,先将每个提取物通过 GSH-琼脂糖柱,以“选择”所述样本中对 GSH 具有亲和力的分子。此外,还测试了肿瘤抑制基因 HACE-1 在小鼠胚胎干细胞 (mESC) 和恶性人类宫颈癌 HeLa 细胞基因组中的存在和表达,这两种细胞都含有该基因的额外拷贝,通过用含有肿瘤抑制基因拷贝的适当重组 DNA 载体转染插入。开发的实验体外模型显示了特定的分子间相互作用,可以阻止疾病的发展。此外,还展示了非淋巴细胞类型产生抗体/免疫球蛋白的可能性。因为以这种方式产生的抗体位于专门的淋巴组织和器官中的生发中心之外,所以通过小离子和分子(如神经节苷脂)控制它们的功能非常重要。
尽管数十年的研究证明建立人类嗜铬细胞瘤和副神经节瘤 (PPGL) 细胞系尤为困难,但目前还有其他可靠的临床前 PPGL 模型可用。本综述总结了这些模型,以及我们最近使用患者来源的 PPGL 原代培养物建立的个性化药物筛选平台。当前可用的 PPGL 模型包括小鼠和大鼠 PPGL 细胞系(其中只有一个细胞系(PC12)可通过细胞库公开访问)和 PPGL 动物模型(其中患者来源的异种移植模型很有前景但建立起来很复杂)。我们已经开发出下一代人类 PPGL 原代培养物实施方案,能够根据肿瘤独特的遗传、生化、免疫组织化学和临床特征进行可靠和个性化的药物筛选,以及对肿瘤药物反应性的个体化分析。总体而言,可靠的 PPGL 模型(包括患者来源的原代培养模型)对于推进 PPGL 领域的临床前研究至关重要。© 2024 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
最初发表于:Monteagudo,María;卡尔西纳,布鲁纳;萨拉查-伊达尔戈,米尔顿 E;马丁内斯-蒙特斯,安吉尔 M;皮内罗-亚涅兹,埃琳娜;卡莱拉斯,爱德华多;马丁,玛丽亚卡门;罗德里格斯-佩拉莱斯,桑德拉;拉脱维亚语,Rocio;吉尔,爱德华多;巴菲特,亚历山大;伯尼雄,耐莉费尔南德斯-桑罗曼,安吉尔;迪亚兹-塔拉韦拉,阿尔贝托;梅利德,萨拉;在,酯类; Reglero,Clara;马丁内斯-布里奇,娜塔莉亚;打鼾者,乔凡娜;德尔奥尔莫,玛丽亚·伊莎贝尔;科拉莱斯,佩德罗·何塞·派恩斯;奥利维拉,克里斯蒂娜·拉马斯;阿尔瓦雷斯-埃斯科拉,克里斯蒂娜;古铁雷斯,玛丽亚·卡拉塔尤德;洛佩兹-费尔南德斯,阿德里亚;加西亚,努里亚·帕拉西奥斯;雷戈霍(Rita Maria)迪亚兹,路易斯·罗伯斯;劳尔登(Nuria Romero)瓜达拉马,奥斯卡·桑斯;博伊施莱因,菲利克斯; Nölting,Svenja(2024)。 MAML3 融合调节血管和免疫肿瘤微环境并导致嗜铬细胞瘤和副神经节瘤的高转移风险。最佳实践研究:临床内分泌代谢,38(6):101931。 DOI:https://doi.org/10.1016/j.beem.2024.101931
对信心的元认知评估提供了决策准确性的估计,可以在没有明确反馈的情况下指导学习。我们使用同时进行的 EEG-fMRI,直接比较人类如何从这种隐性反馈和显性反馈中学习。参与者执行了一项运动方向辨别任务,其中刺激难度增加以保持表现,并混合了显性反馈和无反馈试验。我们使用 EEG 解码分离了决策后信心的单次试验估计值,并发现这些神经特征在反馈时与可分离的显性反馈特征一起重新出现。我们沿着纹状体的背腹梯度识别了这些隐性反馈与显性反馈的特征,这一发现是通过 EEG-fMRI 融合才实现的。这两个信号似乎整合成外部苍白球中的聚合表征,可以通过丘脑和岛叶皮质广播更新以改善皮质决策处理,而不管反馈来源如何。
背景:原发性肾病综合征是儿童慢性肾衰竭的重要原因。疾病期间可能会出现重要的神经元并发症。目的:本研究旨在通过纹理分析证明肾病综合征患儿的基底神经节受累情况。方法:分析了 22 例原发性肾病综合征患儿和 40 例年龄相仿的健康儿童的脑 MRI 图像。从丘脑、豆状核和尾状核提取脑 MRI T2 加权图像并进行纹理分析。结果:对 22 例原发性肾病综合征患儿和 40 例对照组患儿的图像进行了评估。患者组和对照组在年龄和性别方面没有显著差异(P 值分别为 0.410;0.516)。丘脑的直方图参数平均值、1.P、10.P、50.P、90.P、99.P值之间存在显著差异(P值分别为0.001;0.000;0.001;0.002;0.004;0.009);豆状核的直方图参数平均值、1.P、10.P、50.P、90.P、99.P值之间存在显著差异(P值分别为0.031;0.019;0.006;0.006;0.003;0.003;0.001;0.002)。从尾核获得的直方图参数的平均值、1.P、10.P、50.P、90.P、99.P 值之间存在显著差异(P 值分别为 0.002;0.005;0.002;0.002;0.002;0.003;0.003)。结论:纹理分析可能有助于显示原发性肾病综合征儿科患者的脑实质受累情况,因为它可以显示传统图像上无法识别的变化。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年9月21日发布。 https://doi.org/10.1101/2024.09.17.613293 doi:biorxiv Preprint
房颤(AF)是全球主要的医疗保健负担。对于对药理干预具有抗性的AF,标准侵入性治疗是一种肺静脉分离(PVI)程序。神经节丛(GP)消融可以用作PVIS的辅助治疗,从而降低了AF复发的可能性。高频刺激(HFS)是一种用于识别触发gp位点的技术。但是,要定位GP位点,必须在整个心房中输送顺序的HF。因此,确保HFS交付的安全性是避免过度起搏的不可逆转损害的组成部分。我们测试了TAU-20版2个神经模拟器,这是一种新型电生理起搏和记录系统的原型,该原型具有指导心脏内AF处理的潜力。使用与人心脏的解剖结构和生理学相似的离体猪Langendorff模型,我们确认HFS可以成功触发AF,表明HFS阳性位置包含GP位点。此外,我们发现通过TAU-20版本2传递的HFS不会对心脏造成任何损害。这些发现的证据表明,一旦完全优化,TAU-20系统就可以适用于临床环境。
GM1 神经节苷脂沉积症 (GM1) 是一种罕见但致命的神经退行性疾病,由溶酶体酶 β-半乳糖苷酶功能障碍或缺乏产生导致底物积累。GM1 最有希望的治疗方法包括酶替代疗法 (ERT)、底物减少疗法 (SRT)、干细胞疗法和基因编辑。然而,由于血脑屏障 (BBB) 的限制性,神经性 GM1 的有效性有限。ERT 和 SRT 通过在患者一生中补充外源性物质来缓解底物积累,而基因编辑可以治愈,修复致病基因 GLB1 ,使内源性酶活性得以实现。干细胞疗法可以结合两者,通过体外基因编辑细胞来产生酶。这些方法需要特别考虑脑部输送,这导致了新配方的产生。一些治疗干预措施已进入早期临床试验阶段,为改善 GM1 的临床管理带来了光明的前景。
