▪最初提出的2014年提议▪使用离子传输,径向模式操作和光子互连的组合实现ND连通性▪强度:光子是可传输的,潜在的通用量子,所有原始人都证明了所有原始人,“模块化”;更快的早期缩放▪弱点:缺乏光子互连
抽象的超低能离子植入已成为掺杂二维材料和超薄膜的有吸引力的方法。基于二进制碰撞近似的新的动态蒙特卡洛计划Imintdyn允许对低能植入培养物和目标组成变化的可靠预测,以及对高能光离子散射的有效模拟。为了证明这些预测和模拟的质量,我们提出了一个模型案例实验,在该实验中,我们将W离子植入具有低(10 keV)和超低(20 eV)离子能量的四面体非晶碳中,并分析了W植入W具有高分辨率的Rutherford redScatter-Scattrant-ReClanter-Files。使用新的Imintdyn程序将该实验与对实验的离子固定相互作用的各个方面进行了完整模拟。一种独特的新型模拟选项,也与植入2D材料有关,是将空缺作为具有动态空位产生和歼灭的目标物种。虽然忽略空缺形成的模拟不能再现所测量的植入物,但我们发现模拟和测量的HR-RBS光谱之间有很好的一致性。我们还证明了同时弱碰撞在低弹丸能量下二进制碰撞近似中的重要作用。
∞𝑋𝑖𝑗-在j th单元格中的场;细胞的特征功能。•单模近似:𝐸=𝑋𝑗𝑗𝑗𝑗𝑗𝐸𝑗𝐸𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝐸𝑋𝑗𝑋𝑋𝑋𝑋𝑋𝑗𝑗𝑋𝑗𝑗除了孔𝐸0 -tm 010模式的特征函数以外,无处不在。 •通过一个小孔通过相似腔的田地激发腔体:•激发腔场的边界条件𝑬:𝐸= 0; S 1(孔)上的𝐸=𝐄=。 s+ s 1上的特征功能𝐸= 0 = 0•从麦克斯韦方程进行本征函数和激发领域:无处不在。•通过一个小孔通过相似腔的田地激发腔体:•激发腔场的边界条件𝑬:𝐸= 0; S 1(孔)上的𝐸=𝐄=。s+ s 1上的特征功能𝐸= 0 = 0•从麦克斯韦方程进行本征函数和激发领域:
Jinhyup Han A,C,Anh Vu A,Jae Jin Kim A,Jihyeon Gim A, *,Jason R. Croy A,Tae H. Lee B, *和4 Eungje Lee A, * 5
可以识别和测量生物分子的传感器的发明是生物学的关键进步。传感器已在多个行业中广泛使用,最著名的是在医学诊断领域。生物传感器通过整合信号转换和生物识别成分来构成生物检测系统。它们已针对广泛的生物检测应用开发。一类称为电化学生物传感器的生物传感器使用电分析设备,并具有更高敏感性,简单性,速度和生物分子识别选择性的优势。如今最受欢迎的电化学生物传感器之一是ISFET传感器,它执行生化测量和生物分子识别。ISFET最初是在五十多年前提出的,现在使用ISFET制造了最有前途的护理诊断和实验室设备。在本综述的论文中,提出了ISFET的历史,工作原理,制造过程以及建模和仿真技术。此外,还解释了一些物理方面和仿真方法。最后,我们讨论了它们在敏感和可靠地分析包括DNA,酶和细胞在内的多种生物分子中的应用。
摘要:氦离子显微镜最近出现为市售仪器。然而,它的根部可以追溯到60多年来,是在柏林的领域离子显微镜的发展,1951年首次报道的。在随后的几年中,许多研究人员追求了气场电离源的发展,目的是为离子显微镜提供合适的来源。这被证明是一个难以捉摸的目标,直到本世纪初,许多发现导致了成功的来源,此后不久,一种可以完全利用其优势的工具。许多人和许多技术进步都聚集在一起,使这类新的显微镜。这项任务的悠久历史以及最近导致这一里程碑的最新进展进行了审查。给出了该技术及其应用的当前状态的简要摘要。扫描33:1-7,2011。R 2011 Wiley Wendericals,Inc。
存储在射频阱中的线性离子库仑晶体已导致量子信息科学领域的最先进实验,对单个粒子及其之间的相互作用具有出色的控制。这使得线性离子晶体成为量子计算、模拟、计量和传感领域实验的主要平台之一。然而,将这些系统扩展到超过 50 个粒子同时保持对它们的精确实验控制已被证明具有挑战性,但对于执行超出传统计算能力的计算或模拟而言是必需的,这是实验量子信息科学的主要目标。本论文报告了一种新的实验装置的设置,该装置通过摆脱传统的线性离子晶体配置并改为捕获平面离子晶体,实现对射频阱中比以前更大的离子库仑晶体的量子控制。利用第二空间维度的方法开辟了缓解线性离子晶体中遇到的一些与缩放相关的技术限制的方法。另一个好处是可以自然地实现二维粒子的相互作用,特别是用于扩展可在量子模拟中直接研究的模型范围。虽然之前在射频阱中对平面离子库仑晶体的量子控制方面的努力仅限于小系统,但我们的工作标志着首次将这种控制扩展到 100 个离子之外。这篇论文提供了证据,表明可以克服平面离子库仑晶体中出现的已知挑战,例如射频加热、微运动和结构相变,从而为量子模拟应用构建一个强大的实验装置。该装置的功能在表征测量和利用量子关联(尤其是纠缠)的实验中得到证明。
利用量子力学帮助研究人员进行某些计算的前景是一个令人兴奋的机会(至少对于那些面临似乎可以用这种方法解决的问题的人来说)。目前正在制作多种物理设备的原型,这些设备可能能够利用这种量子优势,每个平台都有其优点和缺点。我将介绍使用捕获的原子离子进行量子处理,其中每个原子中的两个长寿命状态用于定义一个量子位。然后,共同捕获的离子能够通过它们在陷阱中共享的正常运动模式总线参与条件量子逻辑。虽然这个想法的扩展必然涉及添加越来越多的原子,但我还将讨论一个可能被忽视的可能性,即每个原子使用两个以上的能级来提高当前捕获原子处理器的计算能力。