远程外观的概念涉及覆盖底物表面的二维范德华层,这仍然使Adatoms能够遵循基础基板的原子基序。必须将生长模式仔细地定义为缺陷,例如,针孔,在二维材料中可以允许从遗产中直接外观,该遗物与外侧外延过度生长结合在一起,也可以形成粘层。在这里,我们显示了几种独特的情况,只能对远程外观进行观察,可与其他基于二维材料的外交机制区分开。我们首先在图案化石墨烯上生长Batio 3,以建立最大程度地减少外侧过度生长的条件。通过观察与高分辨率扫描透射电子显微镜证实的整个纳米尺度的核与无针孔的亚纤维相一致,我们在视觉上确认远程同育在原子尺度上是可操作的。宏观上,我们还显示了依赖于底物的离子性和差异层数的GAN微晶阵列的密度变化。
人们对二维过渡金属二硫属化物产生了浓厚的兴趣,这引发了大量使用可扩展气相方法(如化学气相沉积 (CVD) 和原子层沉积 (ALD))对其合成进行实验研究。ALD 通常允许较低的沉积温度,并且化学前体的成核需要与表面功能团发生反应。研究 ALD 建模的常用第一性原理方法是计算拟议反应途径的活化能。在这项工作中,我们使用密度泛函理论 (DFT) 计算了部分电荷密度、局部态密度 (LDoS)、Bader 电荷分析、吸附能和电荷密度差,以研究 MoF 6 在三种氧化物表面(包括 Al 2 O 3 、HfO 2 和 MgO)的成核。我们的研究结果表明,羟基 (OH) 有助于降低 MoF 6 前半周期内的反应势垒并促进前体在氧化物基底上的化学吸附。这一发现得到了氧化物表面高离子性 MF x(M = 金属,x = 1、2、3)键形成的支持。通过比较有羟基和无羟基的表面,我们强调了表面化学的重要性。
与传统的固体/水凝胶平台形成鲜明对比的是,水不溶性液体(如全氟碳和硅酮)允许哺乳动物细胞通过界面处形成的蛋白质纳米层 (PNL) 粘附。然而,通常用于液体细胞培养的氟碳和硅酮仅具有较窄的物理化学参数范围,并且无法用于多种细胞培养环境。本文提出,水不溶性离子液体 (IL) 是一类新的液体基质,具有可调的物理化学性质和高溶解能力。四烷基膦基 IL 被确定为无细胞毒性 IL,人类间充质干细胞可在其上成功培养。通过烷基链延长减少阳离子电荷分布或离子性,界面允许细胞扩散并具有成熟的焦点接触。高速原子力显微镜对 PNL 形成过程的观察表明,阳离子电荷分布显著改变了蛋白质吸附动力学,这与蛋白质变性程度和 PNL 力学有关。此外,通过利用 IL 的溶解能力,可以制造离子凝胶细胞支架。这使我们能够进一步确定体相亚相力学对液基培养支架中细胞机械传感的重大贡献。
几十年来。 [1] 目前商业化锂离子电池的能量密度受到层状结构正极材料(如 LiCoO 2 和 LiNixMnyCo1−x−yO2)的限制,由于材料晶格中 Li+ 主位点有限,只能提供小于 220 mAh g−1 的比容量。 [2] 此外,锂离子电池市场的快速扩张导致钴和镍价格飙升(2022 年钴金属价格高达 90 美元/千克)。因此,迫切需要探索高能量密度、低成本的无钴、无镍正极材料。转化型材料通常由 Fe、Cu、O 和 S 等价格较便宜且环境友好的元素组成,其容量比插层型电极材料高得多。 [3] 在各种转化化合物中,过渡金属氟化物(MF x )既提供> 2.0 V 的高氧化还原电位(由于金属氟化物键的高离子性),又提供大容量,因为每单位分子式允许多个电子转移,从而实现相当高的理论能量密度。[4] 转化正极面临的一个主要挑战是循环稳定性。优化的 Fe 基氟化物如 FeF 2 、FeF 3 、FeOF 和 Fe 0.9 Co 0.1 OF 可以稳定地充电/放电几百次循环。[5] 然而,Fe 基正极的能量密度仍然不够高。氟化铜(CuF 2 )比 Fe 基氟化物提供了更高的比能量密度(1874 Wh kg −1 ),因为它对 Li/Li + 的理论电位高达 3.55 V,理论容量为 528 mAh g −1 。[6]
在单频哈伯族中继续寻找超导性的最强拟合度之一是基于单频梯的理论在预测丘比特菌酸耦合 - 偶联体积sr sr 14 - x ca x cu x cu 24 o 41 o 41的超导性方面的明显成功。最近的理论工作表明,在孔掺杂的多型梯子梯子中,完全没有准长范围的超导相关性,包括氧气位点上的孔和氧气 - 氧孔跳跃的孔之间的现实库仑排斥。在实验上,SR 14 -x Ca x Cu 24 O 41中的超导性仅在压力下发生,并且在尚未理解的一个远至二维的急剧过渡之前。我们表明,理解尺寸的交叉需要采用一个价值过渡模型,在该模型中,在cu-ion离子性中从 + 2到 + 1中发生了过渡,并将孔从Cu转移到O离子[S. S. Mazumdar,物理。修订版b 98,205153(2018)]。价值转变背后的驱动力是Cu 1 +的封闭壳电子配置,这是所有氧化物具有负电荷转移间隙的阳离子所共有的特征。我们对SR 14-x Ca x Cu 24 O 41进行虚假的实验预测,并讨论我们结果对分层的二维丘陵的含义。
,除非探索非传统计算体系结构和创新的存储解决方案,否则计算和数据存储的能源需求将继续呈指数增长。低能计算,包括内存架构,具有解决这些能力和环境挑战的潜力,尤其是四面体(Wurtzite-type)铁电挑战是绩效和与现有半导体过程集成的有希望的选择。Al 1-X sc X n合金是表现为铁电转换的少数四面体材料之一,但是切换极化所需的电场,即,强制性场E C在MV/CM的顺序上,该顺序是MV/CM的顺序,该顺序比传统的传统氧化物氧化物蛋白酶蛋白酶蛋白酶高度高约1-2个数量级。我们不是进一步的工程AL 1 -x SC X N和相关的合金,而是探索计算识别的替代途径,其开关屏障的新材料低于ALN,但仍具有足够高的内在分解场。超越了二进制化合物,我们探索了具有Wurtzite型结构的多元化合物的搜索空间。通过这次大规模搜索,我们确定了四个有希望的三元氮化物和氧化物,包括Mg 2 Pn 3,Mgsin 2,Li 2 Sio 3和Li 2 Geo 3,以实现实验实现和工程。在> 90%的被考虑的多元材料中,我们确定了独特的开关途径和非极性结构,这些结构与基于ALN的Maverials中通常假定的开关机制不同。我们的结果反驳了现有的设计原理,基于降低Wurtzite C/A晶格参数比率,同时支持两个新兴设计原理 - 离子性和键强度。
通过石墨烯进行远程外延相互作用的实验证据 Celesta S. Chang 1,2,† 、Ki Seok Kim 1,2,† 、Bo-In Park 1,2,† 、Joonghoon Choi 3,4,† 、Hyunseok Kim 1 、Junsek Jeong 1 、Matthew Barone 5 、Nicholas Parker 5 、Sangho Lee 1 、Kuangye Lu 1 、Junmin Suh 1 、Jekyung Kim 1 、Doyoon Lee 1 、Ne Myo Han 1 、Mingi Moon 6 、Yun Seog Lee 6 、Dong-Hwan Kim 7,8 、Darrell G. Schlom 5,*、Young Joon Hong 3,4,*、和 Jeehwan Kim 1,2,6,9,* 1 麻省理工学院机械工程系,美国马萨诸塞州剑桥 02139,2 麻省理工学院电子研究实验室,美国马萨诸塞州剑桥 02139 3 世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 4 GRI-TPC 国际研究中心和世宗大学纳米技术与先进材料工程系,首尔 05006,韩国 5 康奈尔大学材料科学与工程系,纽约州伊萨卡,14850,美国 6 首尔国立大学机械工程系,首尔,韩国 7 成均馆大学(SKKU)化学工程学院,水原 16419,韩国 8 成均馆大学(SKKU)生物医学融合研究所(BICS),水原 16419,韩国 9 麻省理工学院材料科学与工程系,马萨诸塞州剑桥 02139,美国 † 这些作者的贡献相同。 * 通讯至 jeehwan@mit.edu、yjhong@sejong.ac.kr、schlom@cornell.edu ORCID ID:Celesta S. Chang (0000-0001-7623-950X)、Ki Seok Kim (0000-0002-7958-4058)、Bo-In Park (0000-0002-9084-3516)、崔仲勋 (0000-0002-2810-2784)、郑俊石 (0000-0003-2450-0248)、金贤锡 (0000-0003-3091-8413)、李尚浩(0000-0003-4164-1827),路匡业(0000-0002-2992-5723)、Jun Min Suh(0000-0001-8506-0739)、Do Yoon Lee(0000-0003-4355- 8146)、Ne Myo Han(0000-0001-9389-7141)、Yun Seog Lee(0000-0002-2289-109X)、Dong-Hwan Kim(0000-0002-2753-0955)、Darrell Schlom(0000-0003-2493-6113)、Young Joon Hong(0000- 0002-1831-8004)、Jeehwan Kim(0000-0002-1547-0967)摘要远程外延的概念利用衬底的衰减电位二维范德华层覆盖在基底表面,这使得吸附原子能够进行远程相互作用,从而遵循基底的原子排列。然而,必须仔细定义生长模式,因为二维材料中的缺陷可以允许从基底直接外延,这可能会进一步诱导横向过度生长形成外延层。在这里,我们展示了一种只能在远程外延中观察到的独特趋势,与其他基于二维的外延方法不同。我们在图案化石墨烯上生长 BaTiO 3,以显示一个反例,其中基于针孔的外延无法形成连续的外延层。通过观察在没有单个针孔的石墨烯上生长的纳米级成核位点,我们在原子尺度上直观地证实了远程相互作用。从宏观上看,GaN微晶阵列的密度变化取决于衬底的离子性和石墨烯层数,这也证实了远程外延机制。