这项研究评估了锂离子蝙蝠模型的数值离散方法,包括有限差异方法(FDM),光谱方法,PAD“近似和抛物线近似值。评估标准是准确性,执行时间和内存使用量,以指导用于电化学模型的Numerical离散方法的选择。在恒定的电流条件下,FDM显式Euler和runge-kutta方法显示出明显的错误。FDM隐式Euler方法通过更多的节点提高了准确性。光谱法实现了5个节点的最佳准确性和转化。FDM隐式Euler和光谱方法都显示出较高的电流的误差减少。pad´e近似具有较大的误差,随着较高的电流而增加,而抛物线方法的误差高于收敛的光谱和FDM隐式Euler方法。执行时间比较显示抛物线方法是最快的,其次是PAD´E近似。频谱方法的表现优于FDM方法,而FDM隐式Euler是最慢的。记忆使用量对于抛物线和PAD´E方法是最小的,对于FDM方法中等,对于光谱方法而言最高。这些发现提供了在锂离子电池模型中选择适当的数值离散方法的见解。
本文基于与归一化采样的高斯核或综合高斯内核的卷积,对高斯衍生物的两种混合离散方法的性质进行了分析。研究这些离散方法的动机是,在相同规模水平上需要多个阶的多个空间衍生物时,与基于更直接的衍生近似值相比,它们基于基于更直接的衍生近似值而具有更高的效率相比,它们基于具有较高的衍生性速率,以示例性衍生性衍生性不能衍生性不能进行。我们根据定量绩效指标来表征这些混合离散方法的特性,同意它们所暗示的空间平滑量,以及它们从量表 - 流动特征探测器的相对一致性以及从自动量表选择中获得的量表的相对一致性,从尺度上的量表与尺度相关的量度相差很大,该尺度的范围与尺度的相差相差,该尺度的尺度是有效的。理论以及不同类型的离散方法之间。在设计和解释以非常精细的水平运行的规模空间算法的实验结果时,提出的结果旨在作为指导。
摘要。本文提出了连续的时间最佳控制框架 - 在不确定性驱动方案中生成参考轨迹的工作。先前的工作[1]提出了一个自动驾驶汽车的离散时间随机代理。这些结果扩展到连续的时间,以确保在实时设置中发电机的鲁棒性。我们表明,连续时间的随机模型可以通过产生更好的结果来捕获信息的不确定性,从而限制了与离散方法相比,违反问题限制的风险。动态求解器提供更快的计算,而连续的时间模型比离散时间模型更适合多种多样的驾驶场景,因为它可以处理进一步的时间范围,这可以在城市驾驶场景的框架之外进行轨迹计划。
这项研究致力于制定有限菌株非局部弹性拓扑拓扑优化。在原始问题中,我们采用标准的超弹性本构定律和voce硬化定律来描述弹性塑性响应,而后者通过微态正则化增强了弹性响应,以解决有限元方法或基于网格的方法的网格依赖性问题。对于优化问题,目标函数通过将其编写为多个子功能的总结来适应多个目标。采用连续的伴随方法来制定伴随问题;因此,相应的管理方程式以连续的方式编写,例如原始问题。因此,这些方程与使用的离散方法无关,并且可以将其实施到各种模拟方法中。此外,将派生的灵敏度取代为反应 - 扩散方程,以实现设计变量的更新。提供了单材料(Ersatz和真正的材料)和两种物质(矩阵和包含材料)拓扑优化,以证明配方的希望和性能。尤其是,我们讨论应将材料参数的值赋予ersatz材料的哪些值,材料非线性如何影响优化结果以及优化趋势如何通过给出目标函数权重的不同值来改变。
委员会 B 1 离散方法 ................................................................................................ 33 5 阵列天线 ................................................................................................ .43 6 反射器和馈源天线 ................................................................................ 55 15 有效的解决方案和设计方法 ...................................................................... 65 25 手性介质 ................................................................................................ 77 27 电磁学中的经典问题 ............................................................................. 89 30 微带天线的数值方法 ............................................................................. 1 01 39 单极子、偶极子和谐振器 ............................................................................. 113 47 时域有限差分 ............................................................................................. 125 63 新材料 ................................................................................................ 137 68 快速电磁场模拟的模型降阶 ............................................................................. 143 71 从真实数据构建图像 ................................................................................ 155 74 周期性结构的散射 ............................................................................................. 163 75 混合方法................................................................................ 173 85 微带线和电路 ................................................................................ 185 92 复杂介质中的传播、散射和辐射 ........................................................ 193 98 天线 ................................................................................................ 203 102 导波和漏波结构 ................................................................................ 213 103 瞬态天线的特性 ................................................................................ 219 112 矩量法 ............................................................................................. 225 119 散射中的数据表示和可视化 ................................................................ 239 121 导波结构分析 ................................................................................ 245 123 逆问题 ............................................................................................. 255 124 非常规计算方法 ................................................................................ 261 127 网格截断方法 ................................................................................ 267 129 微带天线 ............................................................................................. 279 139 色散介质中的瞬态传播和散射 ...................................... 289 141 二维和三维介电物体的散射 .............................................. 301
委员会 B 1 离散方法 ................................................................................................ 33 5 阵列天线 ................................................................................................ .43 6 反射器和馈电天线 ................................................................................ 55 15 解决方案和设计的有效方法 ...................................................................... 65 25 手性介质 ................................................................................................ 77 27 电磁学中的经典问题 ............................................................................. 89 30 微带天线的数值方法 ............................................................................. 101 39 单极子、偶极子和谐振器 ............................................................................. 113 47 时域有限差分 ............................................................................................. 125 63 新材料 ............................................................................................................. 137 68 快速电磁场模拟的模型降阶 ............................................................................. 143 71 从真实数据构建图像 ................................................................................ 155 7 4 周期性结构的散射 ............................................................................................. 163 75混合方法 ................................................................................................ 173 85 微带线和电路 ...................................................................................... 185 92 复杂介质中的传播、散射和辐射 ........................................................ 193 98 天线 ................................................................................................ 203 102 导波和漏波结构 ................................................................................ 213 103 瞬态天线的特性 ................................................................................ 219 112 矩量法 ............................................................................................. 225 119 散射中的数据表示和可视化 ................................................................ 239 121 导波结构分析 ................................................................................ 245 123 逆问题 ............................................................................................. 255 124 非常规计算方法 ................................................................................ 261 127 网格截断方法 ................................................................................ 267 129 微带天线........................................................................... 279 139 色散介质中的瞬态传播和散射 .......................................... 289 141 2D 和 3D 介电物体的散射 ........................................................ 301
摘要 - 在动态图上检测到的动态检测旨在与图表中观察到的标准模式及其时间信息相比,识别表现出异常行为的实体。由于其在财务,网络安全和社交网络等各个领域的应用,它引起了越来越多的关注。但是,现有方法面临两个重大挑战:(1)动态结构捕获挑战:如何有效地使用复杂的时间信息捕获图形结构,以及(2)负面采样挑战:如何为无人看管的学习构建高质量的负样本。为了应对这些挑战,我们提出了对动态图(Gady)的生成异常检测。gady是一个连续的动态图模型,可以捕获细粒的时间信息以应对动态结构捕获挑战,从而克服了现有离散方法的局限性。指定,我们建议使用优先级的时间聚集和状态特征来增强动态图编码器以进行异常检测。在第二个挑战中,我们引入了生成对抗网络的新颖使用来产生负面子图。此外,在发电机训练目标中引入了辅助损失功能,以确保同时生成的样品的多样性和质量。广泛的实验表明,我们提出的Gady在三个现实世界数据集上的表现明显优于现状方法。补充实验进一步验证了我们的模型设计的有效性和每个组件的必要性。
许多大脑 - 计算机界面(BCI)研究由于其固有的复杂性而忽略了通道优化。但是,仔细的渠道选择会提高性能和用户的舒适性,同时降低系统成本。进化的元映射证明了它们在解决复杂问题方面的有用性,但尚未完全利用。该研究的目的是两个方面:(1)提出一种新型算法,以找到每个用户设置的最佳通道,并将其与其他现有的元次素化学进行比较; (2)建立将这些优化策略调整到该框架的准则。共有3个单目标(GA,BDE,BPSO)和4个多目标(NSGA-II,BMOPSO,SPEA2,PEAIL)现有算法已通过3个公共数据库进行了调整和测试:“ BCI竞争III-DATASET II”,“中心拼写“中心拼写者”和“ RSVP拼写”。双前分排序算法(DFGA),这是一种新型的多目标离散方法,特别针对BCI框架设计。的结果表明,所有元数据术的表现都超过了基于P300的BCIS的完整集和常见的8通道集。dfga使用8个通道表现出3.9%的准确性3.9%。并使用4.66个通道获得了类似的精度。地形分析还强大了为每个用户自定义频道集的需求。因此,提出的方法计算具有不同数量的通道的最佳解决方案集,从而使用户可以为下一个BCI会话选择最合适的分布。©2021作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
放射线学取决于提取各种基于图像的特征来提供决策支持。磁共振成像(MRI)有助于对患者护理的个性化,但高度依赖于获取和重建参数。今天,在放射线学背景下对MR图像的最佳预处理没有指南,这对于公布基于图像的签名至关重要。本研究旨在评估MRI中通常使用的三种不同强度归一化方法(NYUL,Whitestripe,Z-Score)的影响,以及两种强度离散化方法(固定的BIN大小和固定的BIN数字)。对这些方法的影响进行了评估对从脑MRI提取的一阶放射素学特征,从而为未来的放射线学研究建立了统一的方法。使用了两个独立的MRI数据集。第一个(DataSet1)包括20名患有II级和III Gliomas的机构患者,他们接受了对比后3D轴向T1加权(T1W-GD)和T2加信的轴向T2加权流体衰减反转反转恢复(T2W-FLAIR)序列(T2W-FLAIR)序列(T2W-FLAIR)在两个不同的MR设备上(1.5 T和3.0 T和3.0 T and)。Jensen -Shannon差异用于比较标准化前后的强度直方图对。使用一致性相关系数和阶层内相关系数分析了两个采集之间一阶和二阶特征的稳定性。强度归一化高度提高了一阶特征的鲁棒性和随后的分类模型的性能。从公共TCIA数据库中提取第二个数据集(DataSet2),其中包括108例WHO II级和III级神经胶质瘤的患者,以及135例WHO IV级胶质母细胞瘤的患者。使用五种完善的机器学习算法,根据肿瘤等级分类任务(平衡精度测量)评估了归一化和离散方法的影响。For the T1w-gd sequence, the mean balanced accuracy for tumour grade classification was increased from 0.67 (95% CI 0.61–0.73) to 0.82 (95% CI 0.79–0.84, P = .006), 0.79 (95% CI 0.76–0.82, P = .021) and 0.82 (95% CI 0.80–0.85, P = 。005)分别使用NYUL,Whitestripe和Z得分归一化方法,而没有归一化。相对离散化使得不必要地将强度归一化用于二阶放射线学特征。即使离散化的垃圾箱对分类表现有很小的影响,也获得了良好的妥协