P.O. Box 2003,埃塞俄比亚的亚的斯亚贝巴摘要农业的特征是由于人类和自然事件而导致栽培植物的多样性急剧下降。 植物育种通过扩展遗传均质品种和促进少数广泛适应的品种而导致农作物多样性的减少。 种质收集的大小经常限制对它们的访问,因此它们在植物育种和研究中的使用。 因此,如果选择有限数量的遗传多样化的加入作为核心收集,则可以增强种质收集的管理和使用。 因此,本文旨在审查核心收集建立的方式及其在育种计划中的影响。 核心收集是大型种质收集的子集,该子集涉及选择代表收集遗传多样性的加入。 核心收集的目标是改善种质收集的使用和管理。 创建核心收集是具有挑战性的,并且可以花费时间来进行时间,并且可以为任何种质收集而完成。 通常,将配件分组,并在这些分组内部/内部进行选择以创建核心收集。 创建核心集合的基本过程可以分为四个步骤,其中包括域的定义,组中的划分,条目分配和登录选择。 核心集合提供了可管理的样本量,该样本大小是结构化的,并且比整个集合都小。P.O.Box 2003,埃塞俄比亚的亚的斯亚贝巴摘要农业的特征是由于人类和自然事件而导致栽培植物的多样性急剧下降。植物育种通过扩展遗传均质品种和促进少数广泛适应的品种而导致农作物多样性的减少。种质收集的大小经常限制对它们的访问,因此它们在植物育种和研究中的使用。因此,如果选择有限数量的遗传多样化的加入作为核心收集,则可以增强种质收集的管理和使用。本文旨在审查核心收集建立的方式及其在育种计划中的影响。核心收集是大型种质收集的子集,该子集涉及选择代表收集遗传多样性的加入。核心收集的目标是改善种质收集的使用和管理。创建核心收集是具有挑战性的,并且可以花费时间来进行时间,并且可以为任何种质收集而完成。通常,将配件分组,并在这些分组内部/内部进行选择以创建核心收集。创建核心集合的基本过程可以分为四个步骤,其中包括域的定义,组中的划分,条目分配和登录选择。核心集合提供了可管理的样本量,该样本大小是结构化的,并且比整个集合都小。通常,通过简化在基因库运营,基础研究和教育中的种质使用来改善作物的核心收集至关重要。关键词:核心收集,种质,种质收集,遗传资源,遗传多样性。
摘要:马铃薯是一种重要的非谷类主食作物,是世界大量人口的食物来源。全基因组关联研究(GWAS)分析已成为一种有用的工具,通过揭示与感兴趣性状的显著关联来揭示重要植物性状的遗传基础。本研究旨在探索表型多样性并确定与重要花部性状相关的遗传基础。总共使用 237 个四倍体马铃薯基因型作为植物材料,并根据增强区组设计连续两年(2016 年、2017 年)进行田间试验。所研究的花部性状的方差分析反映了非常显著的基因型效应。两年的平均数据显示雌蕊长度(5.53 至 9.92 mm)、雄蕊长度(6.04 至 9.26 mm)和雄蕊上方雌蕊长度(1.31 至 4.47 mm)存在显著差异。 Pearson 相关性分析表明雌蕊长度与雄蕊长度 (r = 0.42) 以及雌蕊高于雄蕊的长度 (r = 0.28) 之间存在高度显著的正相关性。进行了主成分分析,认为前两个主成分共占 81.2% 的变异。星座图根据雄蕊和雌蕊长度将所研究的马铃薯组分为两个主要种群。总共使用了 12,720 个 SNP 标记进行标记-性状关联,发现两年内共有 15 个标记与所研究的性状显著相关。在两年内识别相同的标记有助于验证获得的标记-性状关联。所识别的显著标记反映了一些可能对马铃薯育种计划有益的假定候选基因。据我们所知,这是第一项确定重要花卉性状遗传基础的研究,可能对对这些性状的马铃薯标记辅助育种感兴趣的科学界有所帮助。
摘要:由于现代育种实践,全世界都担心大多数作物(例如水稻)的遗传基础可能会变窄。因此,本研究的目的是调查巴西南部优良水稻种质中的这种现象,包括杂交中常用的种质。该小组由 91 个种质组成。通过层次聚类和主成分分析分析了去壳和精米的形态性状、SNP 标记和矿物质含量数据。事实证明,SNP 标记和层次聚类最适合评估遗传变异性。水稻遗传基础变窄已得到证实,尽管在巴西南部优良水稻种质中仍发现一定程度的遗传变异性,尤其是谷物矿物质含量。关键词:遗传资源、遗传变异性、基因分型、表型、Oryza sativa L.
1 中国热带农业科学院热带作物品种资源研究所,农业农村部木薯种质资源保护与利用重点实验室,农业农村部南方作物基因资源与种质创制重点实验室,儋州 571737;limaohn@163.com (ML);lvrenlong@aliyun.com (RL);wenjunou@catas.cn (WO);songbichen@catas.cn (SC) 2 中国热带农业科学院湛江实验站,湛江 524000 3 海南大学热带农林学院,海南省热带特种观赏植物种质资源重点实验室,热带特种林木观赏植物遗传与种质创新教育部重点实验室,儋州 571737; zixuejuan@163.com (XZ); lidongzhang@catas.cn (LZ) * 通讯作者: guanyuhou@126.com (GH); zhouhanlin8@163.com (HZ) † 以上作者对本文贡献相同。
摘要 仙人掌属植物(Opuntia ficus-indica (L.) Mill.)是能够耐受恶劣环境条件的最知名农作物之一。南非是少数拥有大量仙人掌种质资源的国家之一,这些种质资源代表了移地保护种群。然而,人们对该种群的遗传多样性知之甚少。此外,一些基因型在形态上不明显,因此,对于新手农民和研究人员来说,识别种质资源中的样本是一项挑战。本研究旨在使用八个简单序列重复 (SSR) 标记来区分和测量代表南非仙人掌种质资源的 44 个栽培品种的遗传多样性。显然,这些品种具有中等水平的多样性(平均多态性信息含量 PIC = 0.37,Nei 无偏基因多样性 = 0.42),可区分 90% 的品种。使用算术平均数 (UPGMA) 的非加权配对法对品种进行分析,发现主要分为三个聚类,而主坐标分析 (PCoA) 则显示,根据品种在农业中的用途,其聚类不明显。
摘要 野生二倍体草莓Fragaria vesca是栽培草莓的基础研究模型。目前可用的参考基因组仅限于两个密切相关的种质,即Hawaii 4和CFRA2339。广泛使用的模型种质‘Yellow Wonder’尚未有其参考基因组。在本研究中,使用Oxford Nanopore长读和Illumina短读的组合组装了第7代自交系‘Yellow Wonder’的基因组。这个220兆碱基对基因组的从头染色体规模组装包含34,007个基因,这些基因是通过从Hawaii 4基因组注释中移植过来进行注释的。基因组比较表明‘Yellow Wonder’基因组与之前发表的两个F. vesca种质,即Hawaii 4和CFRA2339相对不同。 “黄色奇迹”参考基因组的出现为草莓属植物增添了另一个重要的基因组资源,使草莓的研究得以快速进展。
一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
识别有希望的种质库加入,这可能会带来具有重大影响或有益的定量变化的单个等位基因,通常类似于在干草堆中寻找针头。实际上,由于高成本,适应性,受限的设施资源和时间压力,几乎永远不可能表现出很大一部分可用的种质。需要对可用配件进行明智的预筛选。此外,当确定具有假定等位基因的特性性状的加入时,尚未完成任务,因为必须将有益的变化整合到精英种质中。在简单的遗传结构(例如鉴定出的主要效应基因)的情况下,可以通过标记辅助反向交叉(MABC)渗入新颖的等位基因,也可以通过基因编辑来接近。然而,需要进行先前的发现研究来识别与表型变异相关的遗传变异。特别是基因编辑需要有关因果变异的非常精确的信息。与MABC中应用可能相关的性状相关标记的可用性可能是基因编辑方法不足的。这项研究是资源和耗时的,并且在与精英材料的遗传背景结合使用时,由于等位基因的影响改变了,因此具有固有的验证实验的固有风险。处理定量变化时,不需要专用的映射实验。但是,将定量变化带入精英背景并使育种者可以接受的产品更加困难。陆地带有许多有害和下等位基因,这些等位基因可以迅速破坏数十年来繁殖者艰苦地建立的积极联系。降低的农艺表现使育种社区不愿在其精英育种计划中包括这种种质。
摘要:公共和私人植物育种者是植物遗传资源最重要的用户之一,这些资源主要保存在世界各地的公共基因库中。通过育种工作,他们为全球、区域和地方的粮食和营养安全做出了重大贡献。植物育种者需要遗传多样性才能开发出具有竞争力的新品种,以适应不断变化的环境条件并满足消费者的需求。为了确保持续及时地获取含有所需特性和性状的遗传资源,植物育种者建立了工作收藏,其中包含他们所育种作物的育种材料和种质。然而,随着《生物多样性公约/名古屋议定书》和《国际条约》等新的全球法律文书引发的获取条件不断变化且越来越严格,植物育种者在 21 世纪初开始建立自己的基因库。本文分析了造成这种情况的条件以及植物育种者获取所需种质的历史方式。公共基因库在向用户(包括私营部门植物育种者)提供遗传资源方面发挥了有益作用,并且将继续发挥这种作用。然而,种质资源管理者收集和分发种质资源的做法也受到了全球论坛上制定的新法律框架的影响。正是在这种背景下,对公共和私营部门基因库之间的互补性和合作进行了评估。只要有可能,就会使用蔬菜遗传资源和蔬菜私营育种公司来分析和说明这种合作。作者研究了已报道的成功合作案例,并考虑了建立和加强这种合作的机会和方法,以确保继续提供粮食和营养安全的基础。