摘要 - 准确诊断对于成功治疗脑肿瘤至关重要。基于内容的医学图像检索 (CBMIR) 可以通过从医学图像数据库中检索相似图像来帮助放射科医生进行诊断。这里提出了一种用于脑肿瘤的新方法 CBMIR。磁共振成像 (MRI) 最常用于对脑肿瘤进行成像。在图像采集过程中,由于患者的移动,MRI 图像可能会错位,并且 MRI 图像的低级语义可能与脑肿瘤的高级语义不符,对于使用的两级 CBMIR 系统,首先使用全局特征(圆度、不规则性和纹理特征)将脑肿瘤查询图像分类(使用 SVM 和 ANN)为癌性和非癌性肿瘤,然后使用局部特征搜索具有已识别类别的最相似图像。该实验已在 294 张脑 MRI 图像上进行,并对分类结果与准确率、准确率和召回率进行了比较。关键词 - CBMIR、脑 MRI、全局特征、LBP、ANN、SVM。
摘要 机载传感器数据速率高,由于下行链路带宽有限,需要机载高速存储系统。NAND Flash 及其制品是最常见的存储介质,而传统的 FAT 文件系统在存储系统中得到广泛应用。然而,使用该文件系统记录实时高速数据存在稳定的问题。FAT 文件系统的管理时间相对较长,这是由于内部开销(包括检索和更新 FAT 和 FDT)造成的。本研究的目的是研究实时文件系统的技术。为解决这一问题,提出了一种称为 FPFPA(FAT 后分配和 FDT 后分配)的方法。为了评估所提方法的性能,在机载雷达高速存储系统上测试了采用我们的方法的文件系统的管理时间。结果表明,所提方法成功实现了我们的目标,文件系统的管理时间显著减少且足够小。关键词:机载传感器、文件系统、实时、高速存储 分类:存储电路与模块
尽管稳定转化技术的应用使人们对于基因功能有了更深入的了解,但将其应用在高通量研究中仍然十分困难。农杆菌浸润法已经被广泛应用于本氏烟等物种中,用于快速检测基因表达和蛋白质相互作用分析,但该技术在其他植物物种中效果并不理想,包括拟南芥。由于目前在模式植物拟南芥中缺乏高效的高通量瞬时表达系统,我们开发了一种高效、可重复、适用于在拟南芥和其他 7 种植物中瞬时表达多种功能蛋白的方法,包括甘蓝、风疹菜、盐芥、盐芥、马铃薯、辣椒和本氏烟。该方法的有效性已在三个独立的研究机构中得到独立验证,表明该技术的稳健性。此外,除了展示该技术在一系列物种中的实用性之外,我们还介绍了一个案例研究,采用该方法评估拟南芥蔗糖生物合成途径中的蛋白质-蛋白质相互作用。
碳捕获和储存:一种昂贵且未经证实的错误解决方案 CCS 是一个高昂的失败品 CCS 是一个高昂的失败品 尽管政府投入了数十亿美元的资金,但发电厂的 CCS 技术仍然价格昂贵,并未达到宣传的效果。即使得到了数十年的支持,配备 CCS 的发电厂的成本估算仍大大高于 2005 年的水平。1 高昂的投资成本阻碍了整个欧洲的大规模实施。2 2013 年,挪威政府终止了原定位于 Statoil 的 Mongstad 炼油厂的全面 CCS 项目。Statoil 称 CCS 项目“规模庞大且要求很高”。3 2015 年,英国政府取消了一项用于资助两个商业 CCS 项目的 10 亿英镑拨款。4 几年后的 2018 年,欧洲审计院的报告发现,欧盟委员会为失败的商业 CCS 项目投入了超过 2.58 亿欧元。 5 失败的项目是 2009 年为支持 CCS 和可再生能源而设立的两个资助计划的一部分,总预算为 37 亿欧元。 6 12 个拟议的商业 CCS 项目无一实现。 7 从英国到西班牙,再到波兰、意大利和德国,该议程下的昂贵 CCS 项目都以失败告终。 8 众所周知,荷兰的示范项目鹿特丹捕集和封存示范 (ROAD) 在 8 年后于 2017 年被搁置,理由是失败
为了解决“存储墙”问题,人们迫切需要具有高速度和高密度的存储设备。在这里,我们展示了一种高度可扩展的三维可堆叠铁电二极管,其整流极性由 Hf 0.5 Zr 0.5 O 2 薄膜的极化反转调制。通过利用原子分辨率球差校正 STEM 可视化铪/锆晶格序和氧晶格序,我们揭示了 Hf 0.5 Zr 0.5 O 2 薄膜的自发极化与氧原子位移之间的相关性,从而明确地识别出 Hf 0.5 Zr 0.5 O 2 薄膜中的非中心对称 Pca2 1 正交相。我们进一步在 8 层 3D 阵列中实现了这种铁电二极管。演示了高达 20 ns 的运行速度和超过 10 9 的耐用性。超过 100 的内置非线性保证了其自选择特性,从而无需使用外部选择器来抑制大阵列中的漏电流。这项工作为未来存储器层次结构的演进开辟了新的机会。
摘要 — 电动飞机的电力推进驱动器需要轻便高效的电源转换器。此外,驱动器的模块化构造方法可确保降低成本、提高可靠性和易于维护。本文首次报道了额定功率为 100 kW、1 kV 直流链路的模块化直流-交流三级 T 型单相桥臂电力电子构建块 (PEBB) 的设计和制造过程。由硅 IGBT 和碳化硅 MOSFET 组成的混合开关被用作有源器件,以实现高功率下的高开关频率。拓扑和半导体选择基于基于模型的设计工具,以实现高转换效率和轻量化。由于没有商用三级 T 型功率模块,设计了基于 PCB 和现成分立半导体的大功率开关用于中性点钳位。此外,还设计了一种非平凡的铝基多层层压母线,以促进所选有源器件和电容器组的低电感互连。测量的电感表明母线中的两个电流换向回路对称,值在 28 - 29 nH 范围内。估计该块的比功率和体积功率密度分别为 27.7 kW/kg 和 308.61 W/in3。证明了该块在 48 kVA 下的连续运行。测量结果显示该区块的效率为 98.2%。
与使用单个向导 RNA (gRNA) 进行序列特异性引导 CRISPR/Cas9 结合和切割相反,Cas-CLOVER™ 系统使用双 gRNA 引导核酸酶,其中酶的每个半位点亚基都含有催化无活性的 Cas9 (dCas9) 和 IIS 型限制性内切酶 Clo51 的融合蛋白。与广泛用于 TALEN 和锌指核酸酶 (ZFN) 的 FokI 一样,Clo51 活性取决于二聚体的形成,因此 DNA 切割严格依赖于特定距离内两个不同的 gRNA 引导内切酶同时靶向结合。虽然当两个半位点 gRNA 共同递送至细胞时观察到酶的高切割效率,但当单独递送任一半位点 gRNA 时,在原代人类 T 细胞中未观察到靶向破坏。此外,直接比较T细胞中的野生型(WT)CRISPR/Cas9和Cas-CLOVER™表明,在同一基因位点,两种系统都能高效编辑基因组。
