水稻是我国的主要粮食作物,对国际粮食稳定有着重要贡献。随着水稻基因组测序、生物信息学和转基因技术的进步,我国科研人员发现了控制水稻产量的新基因,解析了遗传调控网络,建立了分子设计育种新框架,取得了许多变革性的成果。本文介绍了近年来我国在水稻产量性状研究方面的一些突破和分子设计育种方面的一系列成果,综述了产量性状相关功能基因的鉴定与克隆以及水稻功能基因的分子标记开发,以期对下一步的分子设计育种工作及进一步提高水稻产量起到借鉴作用。
香港科技园公司主席查毅超博士表示:“新田科技城法定图则获批,令我们深受鼓舞。图则的实施将为创新科技过程的各个阶段,包括研究、原型设计、中试以至量产,提供广阔的空间,亦将大大加速生命健康科技、人工智能及数据科学、先进制造、新能源科技等各领域的发展。我坚信此举将大大加强联系和资源配置,从而推动香港创科整体发展和新型工业化。这项大型发展计划必将培育更多本地创科人才,吸引内地和海外优秀科研人员,并为年轻人提供更广阔的发展机会。”
每年,全球约有1000万人死于癌症(1)。目前,癌症的主要治疗方法包括手术切除、化疗、放射治疗、免疫治疗、靶向治疗及中医药治疗等,但每种方法都有各自的临床局限性,以化疗为主的全身治疗仍然发挥着至关重要的作用,特别是近年来逐渐兴起的靶向治疗和免疫治疗,在某些肿瘤的治疗中显示出一定的疗效。然而,无论是化疗、靶向治疗还是免疫治疗,都存在着广泛的耐药性,这会阻碍肿瘤的治疗并导致疾病复发(2)。因此,研究肿瘤耐药性的产生机制、防止耐药细胞的出现仍然是当前科研人员面临的重大挑战。
以色列理工学院致力于使所有科学和工程学科的研究达到最高水平。为此,我们不断努力为我们的研究人员和学生提供包含尖端科学设备的基础设施中心。以色列理工学院基础设施中心使研究人员能够研究从原子到整个生物体的广泛尺度上的材料特性。所有中心都具有现代化的数据收集和分析能力,并得到高性能计算中心的大力支持。正确使用此类设备需要优秀的科研人员,他们不仅要维护设备,还要协助规划实验和分析结果。我很高兴在这里介绍一本小册子,其中概述了以色列理工学院的所有基础设施中心、可供以色列理工学院和外部研究人员使用的设备和方法,以及每个中心优秀员工的信息,他们将不懈努力,使我们的科学梦想成为现实。
摘要:气膜冷却技术对提升航空发动机性能、延长使用寿命具有重要意义。随着对气膜冷却效率要求的越来越高,科研人员对冷却孔的精度测量和数字化测量开展了大量工作。基于此,本文概述了气膜冷却技术的重要性及其原理,回顾了冷却孔的演变过程,详细介绍了当前工程场景中采用的传统冷却孔测量方法及其局限性,将数字化测量方法分为探测测量技术、光学测量技术、红外成像技术、CT扫描技术和复合测量技术五种主要类型,并对这五种类型的测量方法及集成的自动化测量平台进行了分析。最后,通过对冷却孔测量方法的归纳与分析,指出了其技术挑战和未来趋势,为后续研究提供参考与指导。
数据科学——农场每天在地面上产生大量数据点。借助人工智能,农民现在可以实时分析从农场收集的各种驱动因素,例如天气状况、温度、用水量或土壤条件,以更好地为决策提供信息。人工智能技术使农民能够利用触手可及的数据,在使用更少的自然资源的同时种植出健康的作物。Peters 等人在“用于农业研究的带有机器学习的人工智能推荐系统”一文中利用带有机器学习的人工智能推荐系统 (RS) 最大限度地利用与解决农业问题相关的数据,提高科研人员的效率,同时提高对粮食产量估计的准确性。他们得出的结论是,RS 提供了一种强大的方法,可以利用农业企业的大量数据和科学专业知识来预测不断变化的环境条件下的农业生态系统动态。
2020年是充满挑战与机遇的一年。面对突如其来的新冠肺炎疫情,中国空气动力研究与发展中心在做好疫情防控的同时,全力推进科研工作,完成多项科研试验任务,取得了抗疫和科研“双胜利”。这一年,完成了C919宽体客机、高铁等航天飞行器300余项试验,国家重大科技基础设施大型低速风洞建成,一批重要设施加快建设升级,风洞试验能力、质量和效率显著提升。中国空气动力研究与发展中心牵头的国家级数值风洞项目取得重大进展,多款具有自主知识产权、性能一流的软件在全国发布并在全国推广应用,功能涉及网格生成、流场计算、数据后处理等。建立并实施了质量、环境、职业健康安全一体化管理体系,进一步促进了各类科研试验的标准化;学术交流不断深化,中心科研人员以线上方式参加了5场国际会议,包括:
Krupadam 博士在蒂鲁帕蒂的 Sri Venkateswara 大学获得理学学士学位,在海得拉巴的尼赫鲁科技大学获得环境化学硕士(技术)和博士学位。1999 年至 2000 年,他作为 CSIR 的研究员对农业土壤的农药污染进行了研究。在他的第一个职位上,Krupadam 博士担任纳格浦尔 CSIR-国家环境工程研究所 (NEERI) 环境影响评估部和环境材料部的科学家。在材料科学与工程和环境影响评估领域完成了 20 年的科学和学术工作后,他创建了最先进的分子建模和模拟设施,用于设计环境材料和国际公认的原子显微镜设施。他带领一支由 40 名科研人员组成的团队为 CSIR-NEERI 获得了 NABL 和 NABET(印度质量委员会,QCI)等国家认证,这是 CSIR-NEERI 60 年历史的杰出贡献。
作为种植范围最广的作物之一,玉米 ( Zea mays L.) 已被科研人员和育种家广泛研究了一个多世纪。随着各种组学数据高通量检测的进展,人们积累了丰富的玉米及其野生近缘种大刍草的多维和多组学信息。整合这些信息有可能加速遗传研究并改良玉米农艺性状。为此,我们构建了 ZEAMAP ( http://www.zeamap.com ),这是一个综合性的数据库,包含多个参考基因组、注释、比较基因组学、转录组、开放染色质区域、染色质相互作用、高质量遗传变异、表型、代谢组学、遗传图谱、遗传图谱位点、种群结构和大刍草与玉米之间的驯化选择信号。ZEAMAP 用户友好,能够以交互方式整合、可视化和交叉引用多个不同的组学数据集。
人工智能理论的不断发展,在众多学者和科研人员的不懈努力下,已经达到了前所未有的高度。在医疗领域,人工智能发挥着至关重要的作用,其强大的机器学习算法发挥着重要作用。医学影像领域的人工智能技术,可以辅助医生进行X光、CT、MRI等检查诊断,基于声学数据进行模式识别和疾病预测,为患者提供疾病类型和发展趋势的预测,以及利用人机交互技术实现智能健康管理可穿戴设备等。这些成熟的应用为医疗领域的诊断、临床决策和管理提供了极大的帮助,但医疗与人工智能的协同也面临一个迫切的挑战:如何保证决策的可靠性?其根源在于医疗场景的可问责性和结果透明性需求与人工智能的黑箱模型特性之间的冲突。本文回顾了基于可解释人工智能 (XAI) 的最新研究,重点关注视觉、音频和多模态视角的医疗实践。我们努力对这些实践进行分类和综合,旨在为未来的研究人员和医疗保健专业人员提供支持和指导。