在量子信息理论中,对于任何维度为 n 的正整数,混合酉量子信道是那些可以用 n × n 复酉矩阵的共轭凸组合表示的线性映射。我们考虑任何此类信道的混合酉秩,它是这种形式表达所需的最少不同酉共轭个数。我们确定了混合酉信道的混合酉秩 N 和 Choi 秩 r 之间的几种新关系,Choi 秩等于该信道的 Kraus 表示所需的最少非零项个数。最值得注意的是,我们证明了对每个混合酉信道都有不等式 N ≤ r 2 − r + 1 满足(当 r = 2 时,等式 N = 2 也是如此),并且我们展示了已知的第一个满足 N > r 的混合酉信道的例子。具体来说,我们证明对于无穷多个正整数 d (包括每个素数幂 d ),存在 Choi 秩为 d + 1 和混合酉秩为 2 d 的混合酉信道。我们还研究了混合酉 Werner-Holevo 信道的混合酉秩。
非局部量子计算 (NLQC) 用一轮同时进行的通信和共享纠缠取代了两个量子系统之间的相互作用。我们研究了两类 NLQC,f -routing 和 f -BB84,它们与经典信息论密码学和量子位置验证相关。我们给出了两种设置中纠缠的第一个非平凡下界,但仅限于具有完美正确性的下界协议。在这种情况下,我们给出了完成给定函数 f ( x, y ) 的这些任务的任何纠缠态的 Schmidt 秩的下界,其矩阵 g ( x, y ) 的秩为当 f ( x, y ) = 0 时其元素为零,否则严格为正。这也导致了 Schmidt 秩的下界,以 f ( x, y ) 的非确定性量子通信复杂度为依据。由于 f 路由与信息论密码学中研究的条件秘密披露 (CDS) 原语之间的关系,我们获得了一种降低 CDS 随机性复杂度的新技术。
迹回归模型是广为研究的线性回归模型的直接扩展,它允许将矩阵映射到实值输出。这里,我们介绍一个更为通用的模型,即部分迹回归模型,它是一类从矩阵值输入到矩阵值输出的线性映射;该模型包含了迹回归模型,因此也包含了线性回归模型。借用量子信息论的工具,其中部分迹算子已经得到了广泛的研究,我们提出了一个框架,用于利用完全正映射的所谓低秩 Kraus 表示从数据中学习部分迹回归模型。我们通过针对 i)矩阵到矩阵回归和 ii)半正定矩阵补全进行的合成和真实实验展示了该框架的相关性,这两个任务可以表述为部分迹回归问题。
摘要:秩解码问题 (RD) 是基于秩的密码学的核心。进入 NIST 后量子标准化进程第二轮的 ROLLO 和 RQC 等密码系统以及 Durandal 签名方案都依赖于它或其变体。该问题也可以看作是 MinRank 的结构化版本,MinRank 在多变量密码学中无处不在。最近,[16,17] 提出了基于两种新代数建模的攻击,即特定于 RD 的 MaxMinors 建模和一般适用于 MinRank 的 Support-Minors 建模。两者都显著降低了针对这两个问题的代数攻击的复杂性。在 RD 的情况下,与迄今为止的看法相反,这些新攻击被证明能够胜过组合攻击,即使在非常小的域大小下也是如此。然而,我们在此证明,[17] 中对其中一种攻击进行的分析过于乐观,该攻击包括将 MaxMinors 模型与 Support-Minors 模型混合以解决 RD,这会导致低估整体复杂性。这是通过展示这些方程之间的线性依赖关系并考虑这些模型的 F qm 版本来实现的,事实证明,这有助于更好地理解这两个系统。此外,通过对 F qm 而不是 F q 进行操作,我们能够大幅减少系统中变量的数量,并且我们 (i) 仍然保留足够的代数方程来求解系统,(ii) 能够严格分析我们方法的复杂性。对于某些参数,这种新方法可能会改进 [16,17] 中旧的 RD MaxMinors 方法。我们还介绍了一种针对 Support-Minors 系统的新混合方法,它的影响更为普遍,因为它适用于任何 MinRank 问题。这种技术显著提高了针对小型到中型场地规模的 Support-Minors 方法的复杂性。
我们研究低秩相位恢复问题,我们的目标是从一系列无相位线性测量中恢复 ad 1 × d 2 低秩矩阵。这是一个四阶逆问题,因为我们试图恢复通过一些二次测量间接观察到的矩阵因子。我们提出了使用最近引入的锚定回归技术解决该问题的方法。这种方法使用两种不同类型的凸松弛:我们用多面体搜索代替无相位测量的二次等式约束,并通过核范数正则化强制执行秩约束。结果是 d 1 × d 2 矩阵空间中的凸程序。我们分析了两种特定场景。在第一种情况下,目标矩阵为秩 1,观测结构对应于无相位盲反卷积。在第二种情况下,目标矩阵具有一般秩,我们观察一系列独立高斯随机矩阵的内积幅度。在每个问题中,我们都表明,只要我们能够访问质量足够好的锚定矩阵,锚定回归就能从接近最优数量的测量中返回准确的估计值。我们还展示了如何在无相盲反卷积问题中从最优数量的测量中创建这样的锚定,并针对一般秩问题给出了这方面的部分结果。
摘要 本文介绍了一种新颖而有效的量子态估计技术,即低秩矩阵完成量子态断层扫描,用于表征纯量子态,因为它只需要非纠缠基和 2 n + 1 个局部泡利算子。这大大降低了过程的复杂性并提高了状态估计的准确性,因为它消除了对纠缠基的需求,而纠缠基在量子设备上很难通过实验实现。这种基于矩阵完成的方法所需的后处理最少,准确性和效率更高,使其成为研究量子系统特性的理想基准测试工具,使研究人员能够验证量子设备的准确性,表征其性能,并探索量子现象的底层物理。我们的数值结果表明,该方法在准确重建真实量子设备上的多量子比特量子态方面优于当代技术,这为量子态表征领域做出了宝贵的贡献,也是可靠部署中型和大型量子设备的重要一步。
脑电图(EEG)在临床癫痫治疗中常用于监测癫痫患者脑部电信号的变化。随着信号处理和人工智能技术的发展,人工智能分类方法在癫痫脑电信号的自动识别中发挥着重要作用。但传统分类器容易受到癫痫脑电信号中杂质和噪声的影响。针对这一问题,该文设计了一种抗噪声低秩学习(NRLRL)脑电信号分类算法。NRLRL建立低秩子空间连接原始数据空间与标签空间,充分利用监督信息,考虑样本局部信息的保存性,保证类内紧凑性和类间离散性的低秩表示。将非对称最小二乘支持向量机(aLS-SVM)嵌入到NRLRL的目标函数中。 aLS-SVM基于pinball损失函数寻找两类样本间的最大分位数距离,进一步提高了模型的噪声鲁棒性。在Bonn数据集上设计了多个不同噪声强度的分类实验,实验结果验证了NRLRL算法的有效性。
随着量子信息论领域的发展,拉丁方在经典编码理论中得到应用,考虑拉丁方的量子类似物也是很自然的。量子拉丁方的概念由 B. Musto 和 J. Vicary 于 2015 年提出[12]。此后,这些对象被证明与绝对最大纠缠 (AME) 态有关系,[14] 后者在量子信息中有各种应用。[9] [16] 我们将详细讨论 Rather 等人最近取得的成果 [15],关于大小为 6 × 6 的量子正交拉丁方的存在,这个对象不存在经典等价物。[18] 一个重要的悬而未决的问题是,是否存在任何阶的量子正交拉丁方,它们在某种意义上不等同于已知的经典拉丁方。[21] 然后,我们将通过考虑计算和代数技术,开始研究大小为 3 × 3 的量子正交拉丁方的这个问题。
图 3 . 秩检验。对相似性网络融合 (SNF)、基础网络集成和血常规获得的簇中心力衰竭恶化的累积发生率曲线进行成对对数秩检验,并绘制对数秩 p 值的平均 -log10。对数秩 p 值的平均 -log10 越高,心力衰竭恶化结果的簇分离效果越好(4 年随访)。最佳结果是应用相似性网络融合 (SNF) 来整合组学数据,然后将其分成 8 个簇。