Loading...
机构名称:
¥ 1.0

非局部量子计算 (NLQC) 用一轮同时进行的通信和共享纠缠取代了两个量子系统之间的相互作用。我们研究了两类 NLQC,f -routing 和 f -BB84,它们与经典信息论密码学和量子位置验证相关。我们给出了两种设置中纠缠的第一个非平凡下界,但仅限于具有完美正确性的下界协议。在这种情况下,我们给出了完成给定函数 f ( x, y ) 的这些任务的任何纠缠态的 Schmidt 秩的下界,其矩阵 g ( x, y ) 的秩为当 f ( x, y ) = 0 时其元素为零,否则严格为正。这也导致了 Schmidt 秩的下界,以 f ( x, y ) 的非确定性量子通信复杂度为依据。由于 f 路由与信息论密码学中研究的条件秘密披露 (CDS) 原语之间的关系,我们获得了一种降低 CDS 随机性复杂度的新技术。

非局部量子计算的秩下界

非局部量子计算的秩下界PDF文件第1页

非局部量子计算的秩下界PDF文件第2页

非局部量子计算的秩下界PDF文件第3页

非局部量子计算的秩下界PDF文件第4页

非局部量子计算的秩下界PDF文件第5页