2) 一般而言,从 N 种资产中选取任意数量的资产构建一个最优投资组合需要 2 N 次计算迭代(假设投资组合是等权重的,并且资产是统一定价的)。在这些假设下,10 种资产可以组合成 1,024(2 10 )个不同的投资组合,这是一个易于管理的数量。但如果资产数量增加到 100 种,则可能的组合数为 2 100 ,大致相当于 10 30 或一千万亿平方。生成 2 100 个组合所需的计算无法在实际时间范围内完成。然而,使用 Markowitz 模型可以稍微减少计算工作量,该模型可以将投资组合优化从组合问题转化为线性系统(矩阵代数)问题。具体而言,Markowitz 模型根据资产各自的事前收益率和资产间收益相关性(协方差),确定在风险承受能力约束下使投资组合方差最小的资产组合。虽然与纯组合问题相比,Markowitz 模型大大减少了计算工作量,但它仍然需要多维代数计算,而随着资产数量的增加,这些计算变得越来越难以处理。借助量子计算,理论上可以使用 Harrow-Hassidim-Lloyd (HHL) 算法将计算工作量减少到 log(N) 次迭代,从而快速求解线性方程组。在上面的例子中,当 N = 10 时,HHL 算法理论上可以在一次迭代中解决投资组合优化问题,即使当 N = 100 时也只需两次迭代即可解决。
主要关键词