摘要:照明是人类的基本需求,因此寻找具有高效率和宽带白光发射的照明源十分必要。零维 (0D) 金属卤化物化合物是有希望的候选化合物,一些无铅含锑化合物表现出双峰白光发射。然而,它们的起源仍不清楚。为了解决这个问题,我们设计并制备了一类新的 0D 金属卤化物化合物,由 [M(18-冠-6)] + (M = NH 4 , Rb) 和 SbX 5 2 − (X = Cl, Br) 单元组成。我们发现 0D 化合物的发射曲线与 18-冠-6 醚的发射曲线不同且分离良好,不包括几篇报道中提出的配体内电荷转移机制。飞秒瞬态吸收数据和光物理性质的成分依赖性表明,双峰白光发射是由与金属卤化物耦合的自俘获激子的单重态和三重态(1 STE 和 3 STE)引起的。这些 0D 化合物也是非常高效的发射器,白光光致发光量子产率高达 54%。■ 简介照明是人类的基本需求,占全球电力消耗的约 20%。1
2 = 1 。通过传输经典信息并借助一对额外的纠缠量子比特,可以将这个量子比特从发送器传送到接收器。隐形传态协议不需要传输量子比特 ψ ⟩ 本身,而是使用通过经典信道传递的经典信息以及通过量子信道传递的预共享纠缠量子比特之一,在接收器处重建原始量子比特的副本。因此,QT 系统具有双经典量子信道。更明确地说,通过贝尔测量在发送器处提取有关量子比特 ψ ⟩ 的信息,然后通过经典信道将结果传递给接收器。此信息决定了在预共享量子比特上适当应用单量子比特门,以在接收器处重现隐形传态量子比特的原始状态 ψ ⟩。请注意,在测量之前,量子信道用于从发射器到接收器共享一个纠缠量子比特。然而,只有在实现硬件中的噪声水平较低且经典传输和量子传输均无错误的情况下,隐形传态协议才有效。因此,必须结合量子纠错来保护预共享纠缠量子比特的传输。同样,也需要经典纠错来将测量结果从发射器可靠地传输到接收器。还必须确保传输的安全性,尤其是在量子信道中。经典信道或量子信道(或两者)中的错误都会降低最终隐形传态量子比特的保真度。人们通常认为在隐形传态协议中信道误差可以忽略不计。然而,当隐形传态
我们给出了色玻璃凝聚态有效理论中相对论重离子碰撞中初始色场的色玻璃能量动量张量的简明公式。我们采用具有非平凡纵向相关性的广义 McLerran-Venugopalan 模型,推导出弱场近似下对称核碰撞的 ð 3 + 1 Þ D 动态演化的简明表达式。利用蒙特卡罗积分,我们以前所未有的细节计算了 RHIC 和 LHC 能量下早期可观测量的非平凡快速度分布,包括横向能量密度和偏心率。对于具有破坏增强不变性的设置,我们仔细讨论了 Milne 框架原点的位置并解释了能量动量张量的分量。我们发现纵向流动与标准 Bjorken 流动在 ð 3 + 1 + D 情况下有所不同,并提供了这种影响的几何解释。此外,我们观察到快速度剖面侧面的普遍形状,无论碰撞能量如何,并且预测极限碎裂也应在 LHC 能量下保持。
摘要 贝尔不等式是量子基础的基石之一,也是量子技术的基本工具。尽管人们付出了很多努力来探索和推广它们,但由于波函数坍缩,人们认为不可能从一个纠缠对中估计出整个贝尔参数,因为这将涉及测量同一量子态上不相容的可观测量。相反,本文报道了新一代贝尔不等式测试的首次实施,能够从每个纠缠对中提取一个贝尔参数值,同时保留对纠缠而不是破坏它。这是通过利用弱测量序列来实现的,允许在量子态上进行不相容的可观测量而不会使其波函数坍缩。从根本上讲,通过消除在不同测量基之间进行选择的需要,我们的方法扩展了反事实确定性的概念,因为它允许在贝尔不等式测试所需的所有基中测量纠缠对,从本质上消除了与未选择的基相关的问题。从实际角度来看,在我们对贝尔参数进行测量之后,粒子对内的纠缠基本保持不变,因此可以用于其他与量子技术相关或基础的用途。
在社会行为的神经控制中的快速进步突出了从事差异信息处理以产生行为的相互连接节点的作用。许多天生的社会行为对于生殖适应性至关重要,因此在乳腺和复制剂中,在哺乳动物的生产过程中,在哺乳动物的早期发展中,在男性和女性的基本上不同。社会行为及其成人表现形式的早期生活编程是独立的,但却是封锁的,但尚不清楚。本综述旨在通过识别四种核心机制(表观遗传学,细胞死亡,电路形成和成人Hormonal调制)来强调这一差距,从而将发展变化与交配和侵略的成人行为联系起来。我们进一步建议,一种独特的社会行为,青少年的玩法,通过参与基于成人生殖和侵略性行为的相同神经网络来弥合前白大学的大脑。
高斯状态和测量值加在一起不足以成为量子计算的强大资源,因为任何高斯动力学都可以用经典方法高效模拟。然而,众所周知,任何一种非高斯资源(状态、幺正运算或测量)与高斯幺正值一起构成通用量子资源。光子数分辨 (PNR) 检测是一种易于实现的非高斯测量,已成为尝试设计非高斯状态以进行通用量子处理的常用工具。在本文中,我们考虑对零均值纯多模高斯状态的子集进行 PNR 检测,以此作为在未检测到的模式上预示目标非高斯状态的一种手段。这是因为使用压缩真空和被动线性光学系统可以轻松可扩展地制备具有零均值的高斯状态。我们计算了实际预示状态和目标状态之间的保真度上限。我们发现,当目标状态是多模相干猫基簇状态时,该保真度上限为 1/2,这对于通用量子计算来说是一种足够的资源。这证明了存在无法通过此方法产生的非高斯状态。我们的保真度上限是一个简单的表达式,仅取决于光子数基中表示的目标状态,它可以应用于其他感兴趣的非高斯状态。
我们考虑了一个纳米机电系统,该系统由一个可移动的库珀对盒量子比特组成,该量子比特受静电场影响,并通过隧穿过程耦合到两个块体超导体。我们认为量子比特动力学与量子振荡器动力学相关,并证明如果满足某些共振条件,施加在超导体之间的偏置电压会产生由量子比特态和振荡器相干态的纠缠表示的状态。结果表明,这种纠缠的结构可以由偏置电压控制,从而产生包含所谓猫态(相干态的叠加)的纠缠。我们通过分析纠缠的熵和相应的维格纳函数来表征此类状态的形成和发展。我们还考虑了通过测量平均电流在实验上可行的检测这种效应的方法。
Arasteh, H.、Kia, M.、Vahidinasab, V.、Shafie-khah, M. 和 Catalão, JPS, (2020)。使用随机正则化正态约束的可再生能源主导电力系统的多目标发电和输电扩展规划。国际电力与能源系统杂志 121。https://doi.org/10.1016/j.ijepes.2020.106098
自旋噪声光谱正在成为一种强大的技术,用于研究各种自旋系统的动力学,甚至超越其热平衡和线性响应。在此背景下,我们展示了一种非标准模式的自旋噪声分析,应用于由 Bell-Bloom 原子磁力仪实现的非平衡非线性原子系统。由外部泵驱动并进行参数激发,该系统已知会产生噪声压缩。我们的测量不仅揭示了磁共振时原子信号正交的噪声分布的强烈不对称性,而且还提供了对其产生和演化背后机制的洞察。特别是,识别了光谱中的结构,允许研究噪声过程的主要依赖性和特征时间尺度。获得的结果与参数诱导的噪声压缩兼容。值得注意的是,即使在宏观原子相干性丧失的状态下,噪声谱也能提供有关自旋动力学的信息,从而有效提高测量的灵敏度。我们的信函推广自旋噪声谱作为一种多功能技术,用于研究各种自旋磁传感器中的噪声压缩。
Leibfried 等人,《自然》(2005 年) Gao 等人,《自然物理学》(2010 年) Fein 等人,《自然物理学》(2019 年)