执行摘要 背景和目标 SESAR 运营概念 (CONOPS) 第 1 步文件提供了顶层指导,是所有与运营相关的 SESAR 任务的主要共同参考。目标是描述设想的 ATM 运营,以便民用和军用空域用户、服务提供商、机场、航空和 ATM 行业以及 SESAR 计划任务在 SESAR 开发的第一步中对 ATM 的运营特征以及它们在运营实践中暗示的主要变化以及它们所需的支持达成共识。同时,该概念认识到人类在未来系统中继续发挥的重要作用。程序将发生重大变化,未来的态势感知需求将与今天不同。SESAR CONOPS 可以看作是 ICAO 全球空中交通管理运营概念的具体应用,经过改编和解释,适合欧洲,并充分考虑到全球互操作性的需要。CONOPS 还旨在描述 SESAR(欧洲)对“航空系统模块升级”的投入,该升级描述了一套空中交通管理解决方案。该文件由 SESAR WP B4.2 创建。我们的目标是创建一个结构化的文件,便于管理层和专家层使用。
2020-2029 年网络战略计划由欧洲空中航行安全组织网络管理员和网络运营利益相关者(空中导航服务提供商、空域用户、机场和军方)共同制定。网络战略计划阐述了网络的长期前景,旨在确定实现 RP3 和后续发展网络性能目标的主要步骤。网络战略计划已于 2019 年 6 月 27 日获得网络管理委员会批准(如有监管变化,则需要重新协商),并已通过欧洲委员会关于 [xxx] 的决定正式通过。在未来 10 年内,预计空中交通将继续快速增长,需求也将波动。ATM 网络容量和可扩展性应相应发展,以限制预期的 ATFM 延迟增加。在此背景下,网络战略计划定义了为实现网络愿景而应遵循的战略方向,促进了以网络为中心的方法的必要性,这意味着网络中的所有 ATM 利益相关者都将能够认识到网络改进对所有人都有益,无论是在网络层面还是在本地层面。网络战略计划定义了未来十年网络发展的愿景,将其实施转化为 10 个战略目标,这些目标将通过涉及 NM 和所有运营利益相关者(ANSP、空域用户、机场和军队)的广泛协作决策过程 (CDM) 来实现。欧洲网络正经历容量紧缩,通过 RP3 影响整体网络容量,网络战略计划定义了在头五年内要实施的几项举措,以解决容量和飞行效率的改进问题。网络战略计划包括与空域重新配置、卓越运营和机场全面融入网络相关的具体行动,旨在确保在 RP3 期间妥善管理网络性能恢复。这是对未来十年总体战略愿景的补充。环境可持续性将得到进一步加强,并将根据 SES 绩效目标获得必要的优先考虑。ATM 网络的所有合作伙伴将合作,以实现更好的轨迹并加快实施支持绿色航空的创新。与此同时,支持可互操作且安全的信息管理系统和工具的新运营概念将成为帮助解决容量挑战和提供所需运营绩效的关键。这包括本地级别的系统和工具,以及将经历广泛现代化过程的网络管理器系统和工具。网络战略计划支持更专注于创新概念的 SESAR 研发,例如 4D 轨迹管理、目标时间、网络内机场的集成和 SWIM,同时确保在所有网络利益相关者中以协调的方式验证和实施新的运营概念。
摘要 — 本文提出了一套旨在捕捉飞机运行对环境影响的新绩效指标 (PI)。其贡献有三方面:计算最佳轨迹以将其与历史轨迹进行比较,并得出几个飞行效率 PI;提出了一系列基于燃料的 PI,其中燃料仅从不需要机密数据的监视轨迹数据集中估算;并提出了不同的 PI 和变体,旨在分离和识别不同的环境效率低下来源,区分那些可能归因于不同空中交通管理 (ATM) 层的,以及那些可归因于空域用户 (AU) 的。对两天的不同情况进行了案例研究,其中使用拟议的 PI 对 24 小时内穿越 FABEC 空域的所有交通的飞行效率进行了评估。主要结果表明,当以最大航程运行且无航路收费的完全免费航线作为最佳航迹的参考时,可归因于 ATM 的平均燃油效率约为 250 公斤(7.8%)。AU 引起的燃油效率(由于飞行速度超过最大航程速度)平均约为 100 公斤(3%)。还得出结论,垂直和水平轨迹域中的燃油效率对整体飞行效率的贡献相似。然而,战略层面的水平效率更高,而 n
我们渴望的互联航空天空景观距离实现仅剩二十多年时间。这并不长。作为一个行业,我们需要立即采取行动,共同朝着这个目标迈进。这就是为什么这一愿景为我们的未来提供了一张快照,并充当了号召,动员航空界的所有参与者共同建设未来完整的航空运输系统。让我们走到今天的方法不会让我们到达目的地我们目前正面临航空业的新时代,2045 年前的变化速度和创新速度将比过去几十年更快。要安全地容纳天空中的所有空域用户,而不会造成拥堵或延误增加,需要新的思维方式和加强合作。当我们展望这个新的未来时,我们可以清楚地看到面前的许多机遇,但阻碍我们的是多重障碍和关键挑战,这些障碍和挑战遍布整个行业,并深入到传统特征中,这些特征是遗留系统和行业辉煌历史的副产品。我们需要解决这些问题,我们的愿景才能成功。我们面临的挑战 这一愿景是作为理想愿景而制定的。我们认识到实现这一愿景面临许多挑战,并承认需要做的工作。为了实现我们的愿景,以下挑战要么已经得到解决,要么正在解决中:• 平衡
摘要:现代航空业迎来了新关键要素的大规模传播,包括最初仅用于军事目的的遥控飞机系统 (RPAS)。近十年来,RPAS 已准备好成为各种民用应用中的新空域用户。尽管由于国家和国际飞行航空管理局 (FAA) 的限制,RPAS 目前只能飞入隔离空域,但它们在航空发展和经济投资方面具有显著的潜在增长。只有当获准飞入非隔离空域时,才能全面开发 RPAS,就像有人驾驶的民用和军用飞机一样。向 RPAS 披露空域的初步要求是为每个航空运营商实施国际民用航空组织规定的临时安全管理系统 (SMS)。根据欧洲的 SESAR-JU 和美国的 NextGen,这一问题出现在正在进行的空域管理重组背景下(SESAR-JU 已定义应如何在 SESAR 2020 中开展 RPAS 研究,所有这些都符合 2015 年欧洲 ATM 总体规划)。本文根据欧洲航空安全局 (EASA) 定义的操作场景,为实施风险模型和一般程序/方法以调查 RPAS 安全性提供了基础。该研究基于在 RAID(RPAS-ATM 集成演示)项目中进行的多次 RPAS 实验飞行所取得的结果。
2.1 全球空中航行计划 (GANP) 是一种滚动的长期战略方法,它利用现有技术并根据国家/行业商定的运营目标预测未来发展。GANP 的航空系统区块升级 (ASBU) 方法是一种程序化且灵活的全球系统工程方法,允许所有成员国根据其特定的运营要求提高其空中航行能力。区块升级将使航空业实现全球协调、增加容量和提高环境效率,这是现代空中交通增长目前在世界各地所要求的。 2.2 GANP 的区块升级最初以五年为一个增量进行,从 2013 年开始,一直持续到 2028 年及以后。GANP ASBU 规划方法还解决了空域用户需求、监管要求以及空中航行服务提供商和机场的需求。这确保了综合规划的单一来源。这种结构化方法为合理的投资战略提供了基础,并将获得各国、设备制造商、运营商和服务提供商的承诺。 2016 年 10 月,第 39 届国际民航组织大会通过了《全球空中航行计划》的第一个更新版本,该版本将 2016 年至 2031 年的新规划期和 6 年时间增量纳入其中,以便与国际民航组织大会周期保持一致。经过大幅修订的第六版
ATNS 在应对外部市场力量和运营环境方面面临着令人兴奋的机遇和严峻的挑战。在当地运营环境中,ATNS 正在开始其新许可周期的第二年。在成功吸引用户和航空业参与许可申请流程后,新的许可于 2018 年 8 月颁发。此外,ATNS 继续实施董事会于 2015 年 1 月通过和批准的战略。ATNS 将在 2019 年开始全面的战略审查。该组织意识到全球经济因素要求我们继续努力提高运营效率并为我们的利益相关者(尤其是空域用户)提供价值。2019/20 – 2021/22 公司计划根据 ATNS 的授权确定活动的优先顺序。在该计划中,对外部环境因素、利益相关者的关注和期望的进一步考虑指导了我们在战略选择方面的审议。ATNS 选择的战略是通过非监管业务将我们的产品和服务扩展到非洲大陆。这一战略的更高目标是改善非洲的空中交通安全。目前,非管制业务已为 ATNS 的总收入贡献了 10%,并计划随着时间的推移增加这一比例。ATNS 的区域愿景也受到非洲 2063 年议程的指导,该议程旨在动员非洲大陆的计划
步骤/措施 继续 不继续 不适用 1. 参谋部审查并向空域控制机构(ACA)提交下属单位的空域使用申请。 2. 参谋部通过以下方式识别和解决影响计划外事件/更高优先级任务的空域使用的情况: a. 根据需要协助重新定向飞机。 b. 协调与当前作战整合小组的行动以:(1)在必要时指挥炮兵转移或停止射击,以执行计划外的高优先级任务。 (2)在必要时指挥防空导弹防御武器进入保持状态,以执行更高优先级的任务。 (3)在完成后根据需要指挥系统将武器锁定或释放。 (4)根据空中作战指令,指挥当前使用空域的飞机选择替代路线,以便使用该空域执行更高优先级的任务。 3. 参谋部将影响空域使用者的控制变化、限制措施、武器控制状态、交战规则和战斗识别标准分发给下属空域节点。 4. 参谋人员与火力支援部队和空中支援作战中心 (ASOC) 以及空中联络官 (ALO) 协调,消除空域冲突,以便立即满足近距离空中支援 (CAS) 请求。5. 参谋人员监控和增援陆军空中交通服务 (ATS) 单位,为在受支援单位作战区域内飞行的飞机和执行战术行动的单位提供协助。6. 参谋人员协调 ATS 支持,包括:a. 运营配备机场监视雷达进近和精密进近雷达的全仪表机场。b. 为禁区、过渡区和控制区开发特殊用途空域。c. 为陆军机场提供监督、技术专长和标准化。d. 为管制员的培训和认证提供质量保证。7. 参谋人员与空中支援作战官一起监控行动,以便立即解决与预先计划和立即进行的 CAS 的冲突。8. 参谋人员与战术空中控制小组协调,以促进近距离空中支援任务的请求和控制,从而支持地面行动。 9. 参谋人员与空域分队一起维护当前信息,并将下列信息直接分发给相应的空域用户和 ATS 设施:a. 化学、生物、放射性、核和高当量爆炸物。b. 野战炮兵。c. 天气。d. 影响空域控制的空中威胁和空中作战。
本作战概念 (ConOps) 是对 2014 年太空飞行器作战 (SVO) ConOps 1.1 版的更新。它发展了该文件中提出的在商业发射和再入飞行器作业期间管理国家空域系统 (NAS) 的概念。NAS 定义如下:美国空域的共同网络;空中导航设施、设备和服务、机场或着陆区;航空图、信息和服务;规则、法规和程序、技术信息以及人力和物力。包括与军方 1 共同共享的系统组件。美国的空中交通服务 (ATS) 在美国国内和境内提供。在美国本土上空和距美国海岸 12 海里 (NM) 以内的空域,实行国内空中交通管制 (ATC) 分离(有一定限制),并提供其他服务(例如交通咨询、鸟类活动信息、天气和箔条信息等)。国际民用航空组织 (ICAO) 还将部分公海空域委托给美国 (U.S.) 提供 ATS。美国授权的“海洋”(北大西洋西半部、墨西哥湾、加勒比海和北太平洋的某些地区)空域的 ATS 按照 (IAW) FAA 命令提供,与 ICAO PANS ATM doc 4444 一致。根据可用的 CNS 功能,在海洋空域提供的 ATS 与在国内(大陆)空域提供的服务不同。2 本概念中的讨论不涉及国防部 (DoD)、美国国家航空航天局 (NASA) 或其他政府机构的发射。由于 NAS 是由联邦航空管理局 (FAA) 管理的共享公共资源,因此必须制定公平分配 NAS 资源(特别是空域)的方法。由于其速度和飞行剖面,发射/再入飞行器可以相对较快地穿越 NAS。美国联邦航空管理局传统上采用空域隔离,其特点是空域体积相对较大,时间窗口较大,以保护其他 NAS 用户免受潜在异常事件相关的危害。即使发射/再入操作的频率有所增加,由于当前规划和实时不足,这种方法仍然存在。因此,当今的方法导致其他 NAS 用户的效率低下,包括改道、延误、更长的飞行时间和额外的燃料消耗,从而导致运营成本增加。实施该 ConOps 的好处包括通过减少延误、减少路线偏差、减少燃料消耗和减少排放来提高 NAS 效率。对于发射/再入运营商而言,好处包括从更多站点提高运营可用性。实施该 ConOps 还将通过改进利益相关者之间的规划和态势感知,为所有空域用户提供更高效、更可预测的运营策略。
执行摘要 航空业的发展以及减少燃料消耗、排放和延误的迫切需要,要求增加空域和机场容量,并注重为每个空域用户提供首选轨迹(路线和高度)。这反过来又要求改进通信、导航和监视 (CNS) 服务。飞机运营商还寻求通过提供尽可能低的最低限度以及直线进近和垂直引导的显著安全优势来提高效率。《全球空中航行计划》第五版(Doc 9750,GANP)对国际民航组织的航空系统组块升级 (ASBU) 方法进行了高级总结。ASBU 定义了针对四个具体且相互关联的航空绩效领域的运营目标:机场运营;全球互操作系统和数据;最佳容量和灵活航班;高效的飞行路径。GANP 和 ASBU 承认全球导航卫星系统 (GNSS) 是支持实现这些目标的改进服务的技术推动者。GANP 中的路线图概述了 GNSS 元素可用性、相关服务的实施和常规基础设施合理化的时间表。GNSS 支持定位、导航和授时 (PNT) 应用。GNSS 已经是基于性能的导航 (PBN)、自动相关监视 - 广播 (ADS-B) 和自动相关监视 - 合同 (ADS-C) 的基础,如下所述。GNSS 还提供用于同步系统、航空电子设备、通信网络和操作的通用时间参考,并支持广泛的非航空应用。大会第 A32-19 号决议 — 《关于各国在 GNSS 服务方面的权利和义务的宪章》强调了实施和运行 GNSS 时应适用的原则,包括:安全至上;无歧视地获取 GNSS 服务;国家主权;服务提供国有义务确保服务的可靠性;以及全球规划中的合作与互助。本手册提供有关 GNSS 技术和运行应用的信息,以协助国家监管机构和空中导航服务 (ANS) 提供商完成支持实施决策和规划所需的安全和业务案例分析。GPS 和 GLONASS 信号在附件 10 ─ 航空电信的标准和建议措施 (SARP) 中定义。2001 年,国际民航组织通过了GNSS 实施 基于 GNSS 的服务的推出得益于美国和俄罗斯联邦分别提供的两个核心卫星星座(全球定位系统 (GPS) 和全球导航卫星系统 (GLONASS))的运营实施。1994 年,美国提出 GPS 以支持国际民用航空的需求,并于 2007 年重申了这一提议;国际民航组织理事会接受了这两项提议。1996 年,俄罗斯联邦提出 GLONASS 以支持国际民用航空的需求;国际民航组织理事会接受了这一提议。两国都在升级其星座,并向国际民航组织承诺采取一切必要措施保持服务可靠性。欧洲和中国正在开发可与升级后的 GPS 和 GLONASS 互操作的系统(分别为伽利略和北斗卫星导航系统)。多个星座的可用性解决了某些技术和机构问题。GPS 于 1993 年宣布全面投入使用,同年,一些国家批准使用 GPS 导航进行仪表飞行规则 (IFR) 航路、终端和非精密进近 (NPA) 操作。