总结该研究的目的是证明基于植入的Flexioss®Vet骨替代物质的骨骼再生和形成新的牙槽骨的时间。这项研究试图确定与肺泡相比,用新形成的骨缺损填充骨缺损所花费的时间,并用一种标准方法用胶原蛋白海绵填充甲基溶质后的肺泡。该研究是对一组患有晚期牙周疾病的狗(第四阶段)进行的,其中聚合物羟基磷灰石骨替代物质(Flexioss®Vet)植入了右侧的肺泡,并将胶原蛋白海绵植入了同一患者的左侧的Alveoli中。手术后的不同时期进行了宏观检查和X射线检查。在右侧,宏观上,肺泡显示出明显的扩大特征,在X射线检查中,它们对X射线不透明,肺泡和肺泡骨之间没有明显的边界。在左侧,肺泡显然可以穿透X射线,并且主要观察到空心的肺泡,主要是用结缔组织填充的。这项研究还显示,与自我修复肺泡相比,植入物肺泡的骨骼愈合时间显着减少。这些结果表明,植入的材料在狗大骨缺损的骨骼再生过程中显着有益,并且显着缩短了拔牙后骨再生的过程。据推测,这可能反映了一种不仅在上颌骨和下颌骨,而且长骨上的大骨缺损的模型,并且它可能是人类肺泡愈合的模型。
图 2。1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 涡轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非亨德里纳发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示颗粒如何完美地呈球形并倾向于相互附着(Lethabo 发电站)。10 图 2.5:显微照片显示从最小颗粒到最大球体的 100µm 以下尺寸范围。形状怪异的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示尺寸范围 > 100µm 的颗粒。除了球体外,这里还可以看到更多不规则颗粒,这些球体是半燃煤或炭的大颗粒(Lethabo 发电站)。11 图 3。1:A/SI 304 不锈钢和碳钢的损耗与温度的关系,注意两种材料的损耗峰值的位置和大小 [BJ。23 图 3。2:两种不同钢的损耗与温度的关系,无论粒子撞击速度如何,其峰值损耗都发生在同一温度下 [51}。23 图 3。3:侵蚀主导行为状态的定位和向腐蚀主导行为的转变 [BJ 。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。28 图 3.5:侵蚀速率与涂层厚度的图表显示随着涂层厚度的增加,抗侵蚀性增加 [73] 37 图 3。6:Shui 等人的图表清楚地说明了随着 ~~fy ~ 的增加,侵蚀速率呈增加趋势
多糖(纤维素和半纤维素),蛋白质,酚类木质素和果胶的量和排列,部分构成植物组织,部分决定了其衰减速率。富含木质素和/或贫穷的组织已被描述为从生化的恢复,导致缓慢的衰减率。尽管有争议的有机物在具有矿物质颗粒的土壤中存储的机制,但在有机泥炭土壤(HASTOSOLS)中,生化顽固症仍然鲜为人知。为了研究泥炭植物在泥炭土中形成的作用,我们表征了10种物种的生化成分,并检查了三个泥炭地生态系统中土壤中成分的持久性至150 cm的深度。我们假设来自Hummock微型型物种的生化结构成分和内聚力比空心的物种更多。生化成分的相对比例在植物材料和泥炭土的前10厘米之间发生了明显变化,这表明分解发生在泥炭土壤表面,但此后生化成分的相对比例并没有明显地变化至150 cm深。在生化成分中有几种差异,这些成分区分了霍姆克物种与空心物种的最深深度采样。尽管期望木质素样成分的持久性,但可溶性和离子结合的果胶化合物的持久性令人惊讶,因为这些生物聚合物被认为很容易分解。我们的发现表明,除了经常引用的酚类木质素样成分外,泥炭,特定多糖和果胶的结构成分持续存在于泥炭土壤中,并且不应忽略泥炭型生态系统中的碳动态。
3D印刷脚手架提供了治疗脊髓损伤(SCI)的有前途的策略。在这里,我们提出了一种创新的生物技术方法,用于以仿生结构的自由形式打印脚手架的3D打印,其空间分辨率最高为千分尺,旨在植入Wistar大鼠的SCI。脚手架的制造是基于有机聚合物的2光子光聚合化,并且可扩展到病变的几何形状。脚手架被实现为多个填充的平行平行微调(每侧50μm),延伸整个长度。这些微连接被薄壁(5-10μm)隔开,使支架几乎是空心的,同时使其内部表面积最大化。该设计提供了一种最佳的底物,在空间上沿Rostro-caudal方向对齐,以支撑轴突和血管向内生长。我们发现,在低胸腔水平的脊髓的侧面半碎片切除中植入的脚手架表现出与周围组织的良好整合,而没有形成明显的神经胶质疤痕。髓鞘轴突和少突胶质细胞以及在操作后的12周内在植入支架的每个微肺中观察到血管,并且在整个长度中至少在支架中重新生成1000个轴突。治疗可显着提高运动功能,并在第8周降低同侧偏度肢体的痉挛,恢复至少20周。因此,具有较大内部表面积的3D面向空心支架继续持续微台网,有效地降低了轴突分散体,模仿受体组织的自然结构,并创建了用于增强脊髓再生的条件,并恢复了PATETIC LIMB的运动功能。
• 您从哪里开始,源数据的质量如何?您是在“复制”现有形状,还是从简单概念入手,或者您已经有一套良好的 2D 工程图?如果您有 3D 计算机辅助设计 (CAD) 模型,它是什么格式,质量如何,它是否能与其他设计和模拟或加工软件集成?• 零件设计是否基于对复合材料和部件制造的理解?• 美观是最重要的,还是机械性能和功能是首要考虑因素?• 您的组件/产品是否有一个美观的“A”面和一个不可见的“B”面,还是需要外观和内部或正面和背面都好看?• 您是否需要从模具中取出自带颜色的表面?还是总是在之后涂漆?• 厚度控制和几何精度有多重要?您是否需要提供两个精确间隔表面的闭模工艺,还是单面工具就足够了?• 需要什么工艺温度?允许的热膨胀系数 (CTE) 是多少? • 组件材料是什么?工具是否兼容?例如,对于酚醛复合材料部件,固化过程中释放的水分会降低工具的性能吗?• 您的产品有多大?您可以将其制成一个整体,还是需要将其分解成多个组件?• 形状有多复杂?它是空心的吗?它需要插入件还是芯?它是否具有复杂的曲率,还是必须具有超平坦的表面和紧密的尖角才能与传统机加工元件配合使用?• 复合材料组件是否与其他材料和系统一起作为更复杂组件的一部分工作?您能否将这些其他功能元素集成到单个组件中,或者您可能需要模块化或“可拆卸设计”方法?• 您是否从一开始就需要考虑道德、企业责任、可持续性、环境、废物效率或碳足迹目标?• 您需要多快生产出第一个零件?为了提高速度,您可以从上述列表中做出哪些妥协?
确定施加载荷的位置点,以避免在航空航天应用中使用的薄层中扭曲。了解弯曲梁中中性轴和中心轴的区分的概念。理解用于分析经受扭转的非圆形条开发的类比模型,并分析滚动体和三维体中压力之间产生的应力。单位– I:剪切中心:弯曲轴和剪切中心的公理对称和不对称切片。不对称的弯曲:经受非对称弯曲的梁中的弯曲应力,由于非对称弯曲而导致的直束的挠度。单位– II:弯曲梁理论:绕线应力的Winkler Bach公式 - 局限性 - 校正因子 - 弯曲梁中的宽度应力 - 闭合环,受到链接链路中的浓缩和均匀载荷应力。单位– III:扭转:线性弹性溶液prandtl弹性膜(肥皂膜)类比;狭窄的矩形横截面,空心的薄壁扭转构件,倍数连接的横截面。单元– IV:接触应力:简介,确定接触应力的问题,基于接触应力的解决方案的假设;主压力的表达;计算接触应力的方法,体接触中的身体挠度;在狭窄的矩形区域(线接触)上接触的两个物体的应力(线接触)正常为面积,两个物体接触的应力,正常和切线与接触区域的负载。教科书:1。Boresi&Sidebottom的高级材料力学,Wiely International。2。和较好的J.N.单位– V:介绍三维问题:棱柱形杆的均匀应力拉伸,其自身的重量扭曲恒定横截面的圆形轴,板的纯弯曲。Timoschenko S.P.的弹性理论McGraw,Hill Publishers 3 Rd Edition参考书:1。材料的高级强度由Den Hortog J.P. 2。 Timoshenko的板块理论。材料的高级强度由Den Hortog J.P. 2。Timoshenko的板块理论。Timoshenko的板块理论。
在纽约州长安德鲁·库莫(Andrew Cuomo)在整个春季进行的每日电视新闻发布会上,他称Covid-19为“伟大的均衡器”。从某种意义上说,任何人都可以被病毒感染,州长是正确的。几个月后,数据清楚地表明,影响有色人种及其最富有的人的肩膀不平等。保护它们的健康影响和缺乏经济措施是如此极端,以至于Cuomo的陈述不仅仅是空心的 - 它们是残酷的掩盖。如果有的话,Covid-19对于我们其他人来说,Covid-19只不过是1%的新奇和反乌托邦的噩梦。美国现在的案件数量最多。已有近210万人感染了该疾病,已有115,000多人死亡。,如果我们在2008年发生的事情的局限性中遇到了重复的经济崩溃,这可能迫使我们的系统进行了真正的估算和随之而来的改革。取而代之的是,我们有一个大流行,正在促进公众在集体手术面具的掩护下抢劫,因为它巩固了现有的不平等现象。种族,财务和地理劣势的有毒结合实际上被证明是死刑。首先,长期以来在最低薪服务和国内职业中过度代表的有色人种,尤其是黑人美国人,再次受到双重打击。这使另一个重要的“不平衡”带来了。考虑几个区域示例,今天在Medpage中引用:他们的工作和收入随着关闭而蒸发,与高加索人相比,他们的家庭储蓄很少,可以作为防止意外裁员或失去工资的缓冲。随着时间记者艾比·维苏利斯(Abby Vesoulis)的写作,许多低收入工作 - 肉类加工,农业工作,保姆和商店书记员 - “不能远程完成”(对收入的数字鸿沟都没有说明),“与收入相关的数字鸿沟),“大多数低收入工作都不会给您带薪付费的日子。”尽管政府已同意涵盖Covid-19相关的健康覆盖范围,但从事这些工作的人也“不成比例地没有保险或投保的医疗保险”。低收入社区和颜色工人的死亡率大大较高。
图 2。1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 涡轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非亨德里纳发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示颗粒如何完美地呈球形并倾向于相互附着(Lethabo 发电站)。10 图 2.5:显微照片显示从最小颗粒到最大球体的 100µm 以下尺寸范围。形状怪异的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示尺寸范围 > 100µm 的颗粒。除了球体外,这里还可以看到更多不规则颗粒,这些球体是半燃煤或炭的大颗粒(Lethabo 发电站)。11 图 3。1:A/SI 304 不锈钢和碳钢的损耗与温度的关系,注意两种材料的损耗峰值的位置和大小 [BJ。23 图 3。2:两种不同钢的损耗与温度的关系,无论粒子撞击速度如何,其峰值损耗都发生在同一温度下 [51}。23 图 3。3:侵蚀主导行为状态的定位和向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。64 图 4。67 图 4。28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性也随之增加 [73] 37 图 3。6:Shui 等人的图表清楚地说明了侵蚀速率随~~fy ~ 图 3 的增加而增加的趋势。7:氮化和碳化样品的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征 (1) - (7) 与装置照片中的特征相对应。46 图 4.2:侵蚀装置的照片:(1)气体火焰,(2)预热室,(3)侵蚀进料器,(4)加速管。47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b) 测试部分插入的样品室 (5)。48 图 4.4:冷却部分 (6) 连接到旋风分离器和排气管 (7)。可以看出排气管如何有效增加旋风出口管的高度。49 图 4.5:旋风分离器的示意图,显示重要尺寸。6:200°G 运行条件下,仪器上各个位置的温度与时间的关系图。7:500°G 运行条件下,仪器上各个位置的温度与时间的关系图。68 图 4.8:几种不同空气供应压力下,样品最终温度与气体调节器供应压力的关系图。引用的气压是压力调节器上显示的单位,其中 1 bar= 高于大气压 1 个大气压,即2.026x10 5 N.m· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下的颗粒和气体速度与供应压力的关系
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系
图 2.1:典型双程粉状燃料锅炉厂示意图。5 图 2.2:为 640 MW 汽轮机供气的锅炉轮廓,显示了气体温度状态以及典型双程锅炉中经历的平均气体速度。8 图 2.3:南非 Hendrina 发电站的粉煤灰粒度分布。9 图 2.4:20µm 以下的电厂粉煤灰,显示了颗粒如何呈现完美的球形并且倾向于相互粘附(Lethabo 发电站)。10 图 2.5:显微照片显示了从最小颗粒到最大球体的尺寸范围,其尺寸范围都在 100µm 以下。形状畸形的球体通常是空心的,从最右边已经裂开的球体可以看出(Lethabo 发电站)。11 图 2.6:显微照片显示了尺寸范围 > 100µm 的颗粒。这里除了球体之外,还可以看到更多不规则颗粒,这些球体是半燃煤或焦炭的大颗粒(Lethabo 发电站)。11 图 3. 1:A/SI 304 不锈钢和碳钢的损耗与温度关系,注意两种材料损耗峰值的位置和大小 [BJ。23 图 3. 2:两种不同钢的损耗与温度关系,无论粒子撞击速度如何,它们的峰值损耗都发生在同一温度下 [51}。23 图 3. 3:侵蚀主导行为状态的定位以及向腐蚀主导行为的转变 [BJ。25 图 3.4:Ninham 等人使用的典型流化床装置 [51}。 28 图 3.5:侵蚀速率与涂层厚度的关系图,显示随着涂层厚度的增加,抗侵蚀性能增强 [73] 37 图 3.6:Shui 等人的图表清楚地说明了随着温度的增加,侵蚀速率呈上升趋势。 图 3.7:氮化和碳化试样的侵蚀速率与温度的关系图,显示温度对侵蚀速率的影响较弱 [78] 。 40 图 3.8:几种爆炸枪涂层的侵蚀速率与温度的关系图,显示侵蚀速率对温度的依赖性更强 [BO] 41 图 4.1:高温侵蚀磨损装置图。编号特征(1)-(7)与装置照片中的特征相对应。 46 图 4.2:腐蚀装置的照片:(1)气体火焰,(2)预热室,(3)腐蚀进料器,(4)加速管。 47 图 4.3:(a)测试部分,附接到室盖板上,以便于测试后快速取出样品。(b)测试部分插入的样品室(5)。48 图 4.4:冷却部分(6)与旋风分离器和排气管(7)相连。可以看出排气管如何有效增加旋风出口管的高度。 49 图 4.5:显示重要尺寸的旋风图。 64 图 4. 6:200°G 运行期间仪器上各个位置的温度与时间的关系图。 67 图 4. 7:500°G 运行中,仪器上不同位置的温度与时间的关系图。 68 图 4.8:几种不同空气供应压力下样品最终温度与气体调节器供应压力的关系。引用的空气压力是压力调节器上显示的单位,其中 1 bar= 1 个大气压以上,即 2.026x10 5 Nm· 2 • 69 图 4.9:106-125 µm SiC 颗粒在 2.5 kg .m· 通量下颗粒和气体速度与供应压力的关系