糖皮质激素具有广泛的药理活性。一般而言,类固醇药物,例如地塞米松 (DEX),会对不同器官的组织学产生严重的副作用。事实上,糖皮质激素被称为是能够治愈炎症并与免疫系统协同作用以治疗多种健康问题的强效药物。因此,本研究旨在调查 DEX 对肝脏和肾脏组织学变化以及血液生化参数的影响。总共将 13 只无特定病原体的雄性 Lepus cuniculus 兔子随机分成三组,年龄 8-10 月龄,平均体重为 1.12±0.13 公斤。第一组 (n=3) 未接受 DEX,仅接受生理盐水作为安慰剂(对照组)。第 II 组(n=5)动物接受 0.25 mg DEX/kg 体重/天,共治疗 56 天,第 III 组(n=5)动物接受 0.5 mg DEX/kg 体重/天,共治疗 56 天。从兔子耳缘静脉抽取血液。所有血液样本以 3000×g 离心 10 分钟,分离血清样本。测定血脂和微量元素(锌、铜、钙和铁)。通过观察组织的组织学变化对肝脏和肾脏组织进行显微镜分析。结果显示,身体和器官重量以及血清中微量元素的浓度显著(P ≤0.05)下降。另一方面,脂质谱显示胆固醇、甘油三酯和低密度脂蛋白显著增加(P ≤0.05)。然而,与对照组相比,两个 DEX 治疗组的高密度脂蛋白均显著下降。组织学评估结果显示,治疗组的肾脏和肝脏组织出现一定程度的变性、坏死、细胞空泡和淋巴细胞浸润。关键词:地塞米松、必需矿物质、组织学、脂质谱
摘要 目的 描述了一种新的成人自身炎症综合征,称为 VEXAS(空泡、E1 酶、X 连锁、自身炎症、躯体)。我们旨在比较特发性复发性多软骨炎 (I-RP) 和 VEXAS 复发性多软骨炎 (VEXAS-RP) 的临床特征、实验室特征和结果。方法 将法国回顾性多中心 RP 队列中的患者分为两组:VEXAS-RP 和 I-RP。结果 与 I-RP 患者(n=40)相比,VEXAS-RP 患者(n=55)为男性(96% vs 30%,p<0.001),诊断年龄更大(66 岁 vs 44 岁,p<0.001)。他们的发烧患病率 (60% vs 10%, p<0.001)、皮肤病变 (82% vs 20%, p<0.001)、眼部受累 (57% vs 28%, p=0.01)、肺浸润 (46% vs 0%, p<0.001)、心脏受累 (11% vs 0%, p=0.0336) 和 C 反应蛋白水平中位数 (64 mg/L vs 10 mg/L, p<0.001) 都高于 I-RP 组。75% 的 VEXAS-RP 患者患有骨髓增生异常综合征 (MDS),而 I-RP 组无此情况。两组的糖皮质激素使用情况和类固醇减量剂数量相似,但 VEXAS-RP 患者的难治性疾病更常见 (27% vs 90% 获得缓解,p<0001)。 VEXAS-RP 与更高的死亡风险相关:在中位随访期 37 个月后,VEXAS-RP 组有 6 名患者(11%)死亡,而在中位随访期 92 个月后,I-RP 组无患者死亡(p<0.05)。结论我们报告了最大的 VEXAS-RP 队列,其特点是男性发病率高、发热、皮肤病变、眼部受累、肺部浸润、心脏受累、高龄和 MDS 相关。
三阴性乳腺癌 (TNBC) 对抗雌激素和抗 HER2 疗法无反应,需要使用蒽环类、紫杉烷、环磷酰胺和铂化合物的细胞毒药物组合。多药疗法仅能实现 20-40% 的病理治愈率,这是由于药物耐药性和药物治疗可逆性心脏毒性作用导致的累积剂量限制。需要更安全、更有效的 TNBC 治疗方法才能获得持久的治疗反应。本研究描述了新型蒽环类药物匹伐比星的机制分析及其对人类原发性 TNBC 的体内疗效。匹伐比星直接激活 PKCd,触发快速的线粒体依赖性细胞凋亡,并绕过 P-糖蛋白、Bcl-2、Bcl-X L 和 Bcr-Abl 过度表达引起的耐药性。因此,对于在单层培养和肿瘤球中生长的 MDA-MB-231 和 SUM159 TNBC 细胞系,匹伐比星的细胞毒性比阿霉素更强。在植入 MDA-MB-231 人 TNBC 细胞并用匹伐比星和阿霉素的最大耐受剂量 (MTD) 治疗的原位 NSG 小鼠模型中,对匹伐比星和阿霉素的体内疗效进行了比较。通过数字卡尺测量和测定终点肿瘤重量和体积来监测肿瘤生长。通过识别心室心肌细胞中的微空泡来组织学评估终点心脏毒性。与载体治疗的肿瘤相比,用 MTD 多轮阿霉素治疗的原发性肿瘤未能抑制肿瘤生长。但是,单次 MTD 匹伐比星给药可显著抑制肿瘤生长和肿瘤消退(相对于开始治疗之前的肿瘤体积)。对接受药物和载体治疗的小鼠的心脏进行组织学分析显示,治疗剂量的匹伐比星未产生心肌损伤的证据。这些结果支持开发匹伐比星作为阿霉素更安全、更有效的替代品,用于治疗三阴性乳腺癌以及阿霉素治疗适用的其他恶性肿瘤。
摘要背景:具有亚皮质囊肿(MLC)是一种涉及白质的罕见和进行性神经退行性疾病,并未被当前疾病模型充分概括。体细胞重编程,以及基因组工程的进步,可以允许建立用于疾病建模和药物筛查的MLC的体外人类模型。在这项研究中,我们利用细胞重编程和基因编辑技术来开发MLC的诱导多能干细胞(IPSC)模型来概括经典MLC影响的神经系统的细胞环境。方法:外周患者衍生的血液单核细胞(PBMC)的体细胞重编程用于开发MLC的IPSC模型。CRISPR-CAS9基于系统的基因组工程也用于创建该疾病的MLC1敲除模型。以2D细胞培养形式进行了IPSC与神经干细胞(NSC)和星形胶质细胞的分化,然后进行各种细胞和分子生物学方法,以表征疾病模型。结果:由体细胞重编程和基因组工程建立的MLC IPSC的多能性具有很好的特征。IPSC随后与疾病相关的细胞类型分化:神经干细胞(NSC)和星形胶质细胞。 MLC NSC的RNA测序分析揭示了与神经系统疾病和癫痫有关的一组差异表达的基因,这是MLC疾病中常见的临床发现。 该基因集可以作为筛查该疾病潜在治疗性的药物筛查的靶标。IPSC随后与疾病相关的细胞类型分化:神经干细胞(NSC)和星形胶质细胞。MLC NSC的RNA测序分析揭示了与神经系统疾病和癫痫有关的一组差异表达的基因,这是MLC疾病中常见的临床发现。该基因集可以作为筛查该疾病潜在治疗性的药物筛查的靶标。在分化与疾病相关的细胞类型 - 星形胶质细胞后,明确观察到了MLC特征液泡,这在对照组中显然不存在。这种出现概括了该疾病的显着表型标记。结论:通过MLC的IPSC模型的创建和分析,我们的工作解决了对MLC相关细胞模型的迫切需求,用于用于疾病建模和药物筛查测定法。进一步研究可以利用MLC IPSC模型以及生成的转录组数据集和分析,以确定这种衰弱疾病的潜在治疗干预措施。关键字:体细胞重编程,CRISPR-CAS9系统,指示分化引言概括性白细胞脑病带有皮层囊肿(MLC)是一种涉及白质的缓慢进行性退化性脑疾病,它是MLC1或GLC1或GLIAL CAMCAM CAMES跨越的病原变异的结果。这种疾病首先是由荷兰的Marjo van der Knaap博士独立发现的(van der Knaap等,1995),印度阿格拉瓦尔社区中的Bhim Sen Singhal博士(Singhal等,1996)。因此,MLC也被称为Van der Knaap-Singhal疾病(Van der Knaap等,2012)。因果变异的三个主要类别是:MLC1中的常染色体隐性突变,一种常染色体隐性隐性和glialcam中的常染色体显性突变(Capdevila-Nortes等,2013)。MLC1是第一个引起MLC并映射到22QTEL染色体的基因(Topçu等,2000; Leegwater等,2001)。MLC1转化为主要在大脑内的星形胶质细胞中表达的蛋白质(MLC1),尤其是在与血脑屏障的星形细胞末端脚接触(Masaki et al。,2012),在PIA MATER中,以及在Synaptic Cleft(Kater等人2023)中存在的星形胶质细胞。MLC患者的结构特征和观察到的大脑缺陷,例如脑水肿,液体填充囊肿,星形胶质细胞的空泡和降低降低,这表明MLC1可能调节